当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrocatalytic Upgrade of Impure CO2 by In Situ-Reconstructed Cu Catalysts with Gas Exsolution Electrolyzers
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2023-10-31 , DOI: 10.1021/acs.iecr.3c00817
Guobin Wen 1, 2 , Bohua Ren 2 , Xinyu Yang 3 , Yiming Chen 3 , Lichao Tan 1 , Xin Wang 4 , Zhongwei Chen 2
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2023-10-31 , DOI: 10.1021/acs.iecr.3c00817
Guobin Wen 1, 2 , Bohua Ren 2 , Xinyu Yang 3 , Yiming Chen 3 , Lichao Tan 1 , Xin Wang 4 , Zhongwei Chen 2
Affiliation
![]() |
Electrochemical upgrading of CO2 to multicarbon chemicals is widely investigated for carbon neutrality, while the activity of catalysts and the production rate of electrolyzers require further improvements to satisfy industrial demands, especially with impure CO2 at a low concentration. We propose to employ in situ electrodeposition of Cu on different substrates to improve the activity and selectivity of catalysts and further assemble the electrodes into a customized flow-through electrolyzer to boost the conversion rate. The Cu catalyst on a carbon fabric (CF) substrate demonstrates the highest current density among the controlled samples. This is ascribed to the promoted in situ CO2 exsolution for carbon supply induced by a CF substrate with interlaced fibers, as proved by the combined pore-scale multiphysics simulation and experimental characterizations. Therefore, Cu catalyst on the CF substrate shows Faradaic efficiency of over 90% for the total carbon products and a current density of over 300 mA·cm–2 at −0.83 V versus RHE. Furthermore, such a customized flow-through cell using an aqueous electrolyte demonstrates a stable and efficient upgrade of CO2 with both pure and impure CO2 (90%) inlets, exhibiting auspicious prospects for the industrial application of CO2 electrolysis.
中文翻译:
原位重构铜催化剂与气体溶出电解槽对不纯二氧化碳的电催化升级
为了实现碳中和,人们广泛研究了将CO 2电化学升级为多碳化学品,而催化剂的活性和电解槽的生产率需要进一步改进以满足工业需求,特别是低浓度的不纯CO 2 。我们建议采用Cu在不同基底上的原位电沉积来提高催化剂的活性和选择性,并进一步将电极组装成定制的流通式电解槽以提高转化率。碳纤维 (CF) 基底上的铜催化剂表现出受控样品中最高的电流密度。这归因于具有交错纤维的CF基底促进了原位CO 2溶出以促进碳供应,这一点已通过组合的孔隙尺度多物理场模拟和实验表征得到证明。因此,CF基底上的Cu催化剂对总碳产物显示出超过90%的法拉第效率,并且在-0.83 V vs RHE下的电流密度超过300 mA·cm –2。此外,这种使用水性电解质的定制流通池展示了纯CO 2 和不纯CO 2 (90%)入口的CO 2稳定高效的升级,展现了CO 2电解的工业应用的良好前景。
更新日期:2023-10-31
中文翻译:

原位重构铜催化剂与气体溶出电解槽对不纯二氧化碳的电催化升级
为了实现碳中和,人们广泛研究了将CO 2电化学升级为多碳化学品,而催化剂的活性和电解槽的生产率需要进一步改进以满足工业需求,特别是低浓度的不纯CO 2 。我们建议采用Cu在不同基底上的原位电沉积来提高催化剂的活性和选择性,并进一步将电极组装成定制的流通式电解槽以提高转化率。碳纤维 (CF) 基底上的铜催化剂表现出受控样品中最高的电流密度。这归因于具有交错纤维的CF基底促进了原位CO 2溶出以促进碳供应,这一点已通过组合的孔隙尺度多物理场模拟和实验表征得到证明。因此,CF基底上的Cu催化剂对总碳产物显示出超过90%的法拉第效率,并且在-0.83 V vs RHE下的电流密度超过300 mA·cm –2。此外,这种使用水性电解质的定制流通池展示了纯CO 2 和不纯CO 2 (90%)入口的CO 2稳定高效的升级,展现了CO 2电解的工业应用的良好前景。