当前位置:
X-MOL 学术
›
Geom. Funct. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Classical wave methods and modern gauge transforms: spectral asymptotics in the one dimensional case
Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2023-10-31 , DOI: 10.1007/s00039-023-00650-x Jeffrey Galkowski , Leonid Parnovski , Roman Shterenberg
中文翻译:
经典波方法和现代规范变换:一维情况下的谱渐近
更新日期:2023-10-31
Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2023-10-31 , DOI: 10.1007/s00039-023-00650-x Jeffrey Galkowski , Leonid Parnovski , Roman Shterenberg
In this article, we consider the asymptotic behaviour of the spectral function of Schrödinger operators on the real line. Let \(H: L^{2}(\mathbb{R})\to L^{2}(\mathbb{R})\) have the form
$$ H:=-\frac{d^{2}}{dx^{2}}+Q, $$where Q is a formally self-adjoint first order differential operator with smooth coefficients, bounded with all derivatives. We show that the kernel of the spectral projector, \({1}_{(-\infty ,\rho ^{2}]}(H)\), has a complete asymptotic expansion in powers of ρ. This settles the 1-dimensional case of a conjecture made by the last two authors.
中文翻译:
经典波方法和现代规范变换:一维情况下的谱渐近
在本文中,我们考虑薛定谔算子谱函数在实线上的渐近行为。设\(H: L^{2}(\mathbb{R})\to L^{2}(\mathbb{R})\)具有以下形式
$$ H:=-\frac{d^{2}}{dx^{2}}+Q, $$其中Q是具有平滑系数的形式自伴一阶微分算子,以所有导数为界。我们证明光谱投影仪的内核\({1}_{(-\infty ,\rho ^{2}]}(H)\)具有ρ幂的完全渐近展开式。这解决了 1最后两位作者提出的猜想的维案例。