微流控技术在分子生物学1,2 、合成化学3,4 、诊断学5,6和组织工程7领域取得了显着进展。然而,该领域长期以来一直迫切需要通过电子电路的精确性、模块化和可扩展性来操纵流体和悬浮物8,9,10 。正如电子晶体管在电子芯片上的电力自动控制方面取得了前所未有的进步一样,晶体管的微流体模拟可以改善微流体芯片上试剂、液滴和单细胞的自动控制。先前创建电子晶体管11、12、13的微流体模拟的工作没有复制晶体管的饱和行为,并且无法实现比例放大14 ,而比例放大14是现代电路设计15的基础。在这里,我们利用流量限制16的流体现象来开发一种能够成比例放大的微流体元件,其流量-压力特性完全类似于电子晶体管的电流-电压特性。然后,我们使用这种微流体晶体管将基本电子电路直接转换到流体领域,包括放大器、调节器、电平转换器、逻辑门和锁存器。我们还结合这些构建块来创建更复杂的流体控制器,例如计时器和时钟。最后,我们演示了一种颗粒分配器电路,该电路可感测单个悬浮颗粒、执行信号处理并相应地以确定性方式控制每个颗粒的运动,而无需电子设备。 通过利用大量的电子电路设计,基于微流控晶体管的电路使流体自动控制器能够操纵芯片实验室平台的液体和单个悬浮颗粒。
"点击查看英文标题和摘要"
A microfluidic transistor for automatic control of liquids
Microfluidics have enabled notable advances in molecular biology1,2, synthetic chemistry3,4, diagnostics5,6 and tissue engineering7. However, there has long been a critical need in the field to manipulate fluids and suspended matter with the precision, modularity and scalability of electronic circuits8,9,10. Just as the electronic transistor enabled unprecedented advances in the automatic control of electricity on an electronic chip, a microfluidic analogue to the transistor could enable improvements in the automatic control of reagents, droplets and single cells on a microfluidic chip. Previous works on creating a microfluidic analogue to the electronic transistor11,12,13 did not replicate the transistor’s saturation behaviour, and could not achieve proportional amplification14, which is fundamental to modern circuit design15. Here we exploit the fluidic phenomenon of flow limitation16 to develop a microfluidic element capable of proportional amplification with flow–pressure characteristics completely analogous to the current–voltage characteristics of the electronic transistor. We then use this microfluidic transistor to directly translate fundamental electronic circuits into the fluidic domain, including the amplifier, regulator, level shifter, logic gate and latch. We also combine these building blocks to create more complex fluidic controllers, such as timers and clocks. Finally, we demonstrate a particle dispenser circuit that senses single suspended particles, performs signal processing and accordingly controls the movement of each particle in a deterministic fashion without electronics. By leveraging the vast repertoire of electronic circuit design, microfluidic-transistor-based circuits enable fluidic automatic controllers to manipulate liquids and single suspended particles for lab-on-a-chip platforms.