当前位置:
X-MOL 学术
›
ACS Mater. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lateral Homoepitaxy Growth of Organic Single-Crystal Arrays for Large-Scale and High-Performance Organic Field-Effect Transistors
ACS Materials Letters ( IF 9.6 ) Pub Date : 2023-10-25 , DOI: 10.1021/acsmaterialslett.3c00897 Haoyu Jiang 1 , Zhengjun Lu 1 , Wei Deng 1 , Fengquan Qiu 1 , Yujian Zhang 1 , Jialin Shi 1 , Jiansheng Jie 1, 2 , Xiujuan Zhang 1
ACS Materials Letters ( IF 9.6 ) Pub Date : 2023-10-25 , DOI: 10.1021/acsmaterialslett.3c00897 Haoyu Jiang 1 , Zhengjun Lu 1 , Wei Deng 1 , Fengquan Qiu 1 , Yujian Zhang 1 , Jialin Shi 1 , Jiansheng Jie 1, 2 , Xiujuan Zhang 1
Affiliation
Epitaxial single-crystal semiconductors, serving as the backbone of electronic devices, are the cornerstones of modern electronics. Solution-processable organic semiconductors provide the potential for the epitaxial growth of their single crystals using low-cost and scale-up solution-based methods. However, current epitaxy methods for the growth of organic semiconducting single crystals (OSSCs) are plagued by limited scalability and controllability, impeding their integration into large-area electronic platforms. Here, we report a lateral homoepitaxy growth method that can be compatible with scalable solution printing techniques, thus obtaining centimeter-scale OSSC arrays. We engineer a selective wettability area to enable the formation of well-aligned seed crystals and unlock a stable lateral homoepitaxy epitaxy process. Using this approach, we achieve purely a-axis oriented 2,7-dioctyl[1]-benzothieno[3,2-b][1]benzothiophene (C8–BTBT) OSSC arrays with high-uniformity morphology and low trap carrier density of 2.8 × 1017 cm–3 eV–1. Leveraging these superiorities, 100 organic field-effect transistors (OFETs) over a centimeter scale developed by the OSSC arrays exhibit a 520% improved average mobility of 10.4 cm2 V–1 s–1 and a low 14.6% variation in carrier mobility. Our approach will lay a strong foundation for OSSCs to fit into the manufacturing of large-area organic single-crystal electronics.
中文翻译:
用于大规模高性能有机场效应晶体管的有机单晶阵列的横向同质外延生长
外延单晶半导体作为电子器件的支柱,是现代电子学的基石。可溶液加工的有机半导体为使用低成本和基于溶液的放大方法进行单晶外延生长提供了潜力。然而,当前用于生长有机半导体单晶(OSSC)的外延方法受到可扩展性和可控性有限的困扰,阻碍了它们集成到大面积电子平台中。在这里,我们报告了一种横向同质外延生长方法,该方法可以与可扩展的溶液印刷技术兼容,从而获得厘米级的OSSC阵列。我们设计了一个选择性润湿性区域,以形成排列良好的籽晶并解锁稳定的横向同质外延工艺。利用这种方法,我们实现了纯a轴取向的 2,7-二辛基[1]-苯并噻吩并[3,2- b ][1]苯并噻吩 (C 8 –BTBT) OSSC 阵列,具有高均匀形貌和低陷阱载流子密度2.8 × 10 17 cm –3 eV –1。利用这些优势,OSSC 阵列开发的 100 个厘米级有机场效应晶体管 (OFET) 的平均迁移率提高了 520%,达到 10.4 cm 2 V –1 s –1,载流子迁移率变化低至14.6 %。我们的方法将为 OSSC 适应大面积有机单晶电子产品的制造奠定坚实的基础。
更新日期:2023-10-25
中文翻译:
用于大规模高性能有机场效应晶体管的有机单晶阵列的横向同质外延生长
外延单晶半导体作为电子器件的支柱,是现代电子学的基石。可溶液加工的有机半导体为使用低成本和基于溶液的放大方法进行单晶外延生长提供了潜力。然而,当前用于生长有机半导体单晶(OSSC)的外延方法受到可扩展性和可控性有限的困扰,阻碍了它们集成到大面积电子平台中。在这里,我们报告了一种横向同质外延生长方法,该方法可以与可扩展的溶液印刷技术兼容,从而获得厘米级的OSSC阵列。我们设计了一个选择性润湿性区域,以形成排列良好的籽晶并解锁稳定的横向同质外延工艺。利用这种方法,我们实现了纯a轴取向的 2,7-二辛基[1]-苯并噻吩并[3,2- b ][1]苯并噻吩 (C 8 –BTBT) OSSC 阵列,具有高均匀形貌和低陷阱载流子密度2.8 × 10 17 cm –3 eV –1。利用这些优势,OSSC 阵列开发的 100 个厘米级有机场效应晶体管 (OFET) 的平均迁移率提高了 520%,达到 10.4 cm 2 V –1 s –1,载流子迁移率变化低至14.6 %。我们的方法将为 OSSC 适应大面积有机单晶电子产品的制造奠定坚实的基础。