当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Covalent Bond Hybrid Nanostructure of N-doped rGO and Ultrathin SnS2 with High Porosity for Lithium-Ion Batteries
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2023-10-26 , DOI: 10.1021/acsanm.3c03935
Jiawei Ji 1, 2 , Zheng Zhou 1, 2 , Chaoze Liu 1, 2 , Song Yan 1, 2 , Shaobo Yang 1, 2 , Rongjuan Zhang 1, 2 , Yanming Xue 1, 2 , Chengchun Tang 1, 2
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2023-10-26 , DOI: 10.1021/acsanm.3c03935
Jiawei Ji 1, 2 , Zheng Zhou 1, 2 , Chaoze Liu 1, 2 , Song Yan 1, 2 , Shaobo Yang 1, 2 , Rongjuan Zhang 1, 2 , Yanming Xue 1, 2 , Chengchun Tang 1, 2
Affiliation
![]() |
The two-dimensionally layered material tin disulfide (SnS2) has a large layer spacing (0.59 nm) that accelerates the diffusion of Li+ and electrons. However, the poor conductivity and huge volume expansion limit its further use. Herein, a covalently tightly assembled SnS2@NRGO hybrid nanostructure with high porosity was successfully synthesized by sacrificing PMMA template support strategies. The high porosity and pore volume of SnS2@NRGO not only increases the permeability of active material and electrolyte and improves the utilization of active material, but also provides buffer space for the huge volume expansion of ultrathin SnS2 during the charging and discharging process. In addition, the strong synergistic effect of the covalent bonding and stable hybridization nanostructure provides an efficient Li+ transport path through the 3D tightly connected NRGO network. N doping introduces a large number of defects and adds more active sites for lithium intercalation. The SnS2@NRGO-3 used as the anodes for LIBs deliver excellent rate performance (540.1 mAh g–1 at a rate of 30 A g–1) and outstanding cycle stability (1031.9 mAh g–1 after 500 cycles at 5 A g–1; the capacity degradation rate of 0.048% per cycle), which attributed to stable hybrid nanostructure and high pore volume. Therefore, the SnS2@NRGO created by us would be a very promising candidate for the future advanced high-rate long-life Li+ storage anode.
中文翻译:
用于锂离子电池的高孔隙率 N 掺杂 rGO 和超薄 SnS2 共价键杂化纳米结构
二维层状材料二硫化锡(SnS 2 )具有较大的层间距(0.59 nm),可加速Li +和电子的扩散。但导电性差和体积膨胀巨大限制了其进一步使用。在此,通过牺牲PMMA模板支撑策略,成功合成了具有高孔隙率的共价紧密组装的SnS 2 @NRGO杂化纳米结构。SnS 2 @NRGO的高孔隙率和孔体积不仅增加了活性材料和电解质的渗透性,提高了活性材料的利用率,而且为超薄SnS 2在充放电过程中巨大的体积膨胀提供了缓冲空间。此外,共价键合和稳定杂化纳米结构的强大协同效应通过3D紧密连接的NRGO网络提供了有效的Li +传输路径。N掺杂引入了大量缺陷并增加了更多的锂嵌入活性位点。用作 LIB 阳极的SnS 2 @NRGO-3 具有出色的倍率性能( 30 A g –1倍率下为540.1 mAh g –1 )和出色的循环稳定性(5 A g –1倍率下 500 次循环后为1031.9 mAh g –1 ) –1;每个循环的容量衰减率为0.048%),这归因于稳定的混合纳米结构和高孔体积。因此,我们创建的SnS 2 @NRGO将是未来先进高倍率长寿命Li +存储负极的非常有前途的候选者。
更新日期:2023-10-26
中文翻译:

用于锂离子电池的高孔隙率 N 掺杂 rGO 和超薄 SnS2 共价键杂化纳米结构
二维层状材料二硫化锡(SnS 2 )具有较大的层间距(0.59 nm),可加速Li +和电子的扩散。但导电性差和体积膨胀巨大限制了其进一步使用。在此,通过牺牲PMMA模板支撑策略,成功合成了具有高孔隙率的共价紧密组装的SnS 2 @NRGO杂化纳米结构。SnS 2 @NRGO的高孔隙率和孔体积不仅增加了活性材料和电解质的渗透性,提高了活性材料的利用率,而且为超薄SnS 2在充放电过程中巨大的体积膨胀提供了缓冲空间。此外,共价键合和稳定杂化纳米结构的强大协同效应通过3D紧密连接的NRGO网络提供了有效的Li +传输路径。N掺杂引入了大量缺陷并增加了更多的锂嵌入活性位点。用作 LIB 阳极的SnS 2 @NRGO-3 具有出色的倍率性能( 30 A g –1倍率下为540.1 mAh g –1 )和出色的循环稳定性(5 A g –1倍率下 500 次循环后为1031.9 mAh g –1 ) –1;每个循环的容量衰减率为0.048%),这归因于稳定的混合纳米结构和高孔体积。因此,我们创建的SnS 2 @NRGO将是未来先进高倍率长寿命Li +存储负极的非常有前途的候选者。