当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Full Oxide-Based Solid-State Lithium Battery and Its Unexpected Cathode Degradation Mechanism
ACS Energy Letters ( IF 19.3 ) Pub Date : 2023-10-23 , DOI: 10.1021/acsenergylett.3c01759
Sangwook Han 1 , Donghyun Kil 1, 2 , Sunyoung Lee 1 , Hyeokjun Park 3 , Kun-hee Ko 1 , Wonju Kim 1 , Jooha Park 1 , Chanhyuk Lim 1 , Kyungho Yoon 1 , Joohyeon Noh 1 , Donggun Eum 1 , Daero Won 1 , Kisuk Kang 1, 4, 5, 6
Affiliation  

Fabricating full oxide garnet type Li6.4La3Zr1.4Ta0.6O12 (LLZTO)-based solid-state batteries has posed challenges, particularly in cosintering cathode composites. In this research, we achieve high-performance cathode composites through ultrafast cosintering, facilitated by residual lithium as a sintering agent under an O2 atmosphere. These composites demonstrate compatibility with various cathode materials including LiCoO2 and LiNi1/3Co1/3Mn1/3O2 in an LLZTO-based composite. Significantly, our findings reveal that residual stress on the cathode active material plays a pivotal role in degradation during cycling. The rigid LLZTO framework constrains volume changes in the cathode material during (de)lithiation, leading to mechanical failure. This discovery challenges prior assumptions about the primary susceptibility of the cathode/electrolyte interface to electro-chemo-mechanical failure. Furthermore, stress release mechanisms are found to be influenced by the particle morphology of the cathode material, whether single crystalline LiCoO2 or polycrystalline LiNi1/3Co1/3Mn1/3O2. These insights underscore the importance of managing residual stress and optimizing cathode material morphology for achieving stable performance in full oxide LLZTO-based solid-state batteries.

中文翻译:

全氧化物基固态锂电池及其意外的正极退化机制

制造全氧化物石榴石型Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO)基固态电池提出了挑战,特别是在共烧结阴极复合材料方面。在这项研究中,我们通过超快共烧结实现了高性能正极复合材料,在O 2气氛下利用残余锂作为烧结剂来促进。这些复合材料表现出与各种阴极材料的相容性,包括LLZTO基复合材料中的LiCoO 2和LiNi 1/3 Co 1/3 Mn 1/3 O 2 。值得注意的是,我们的研究结果表明,正极活性材料上的残余应力在循环过程中的降解中起着关键作用。刚性 LLZTO 框架限制了正极材料在(脱)锂化过程中的体积变化,从而导致机械故障。这一发现挑战了先前关于阴极/电解质界面对电化学机械故障的主要敏感性的假设。此外,发现应力释放机制受到阴极材料的颗粒形态的影响,无论是单晶LiCoO 2还是多晶LiNi 1/3 Co 1/3 Mn 1/3 O 2。这些见解强调了管理残余应力和优化阴极材料形态对于在全氧化物 LLZTO 固态电池中实现稳定性能的重要性。
更新日期:2023-10-23
down
wechat
bug