Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2023-10-21 , DOI: 10.1016/j.jmst.2023.07.079 Yuanfei Cai , Bo Lin , Yaocen Wang , Rie Umetsu , Dandan Liang , Shoujiang Qu , Yan Zhang , Junqiang Wang , Jun Shen
The intrinsic heterogeneity of an amorphous structure originates from composition, and the structure determines the magnetic properties and crystallization models of amorphous magnets. Based on classical Fe-B binary magnetic amorphous alloys, the relationship between the structure and magnetic properties was extensively studied. The stacking structure of Fe-B binary amorphous alloys exhibit discontinuous changes within the range of 74 at.% - 87 at.% Fe. The structural feature can be expressed as Amor. Fe3B matrix + Fe atoms are transforming into Amor. Fe matrix + B atoms with the increase of Fe content. The solute atoms are uniformly distributed in the amorphous matrix holes, similar to a single-phase solid solution structure. The transition point corresponds to the eutectic crystallization model composition (Fe82B18 to Fe83B17). A high Fe content will amplify magnetic moment sensitivity to temperature. Under a given service temperature, the disturbance effect of magnetic moment self-spinning will offset the beneficial effect of increasing Fe content and induce the saturation magnetization (Ms) value to decrease. Binary amorphous Fe-B alloys obtain the maximum Curie temperature near 75 at.% Fe, which is slightly smaller than that of the corresponding metastable Fe3B phase, i.e., the amorphous short-range order structure maintains the highest similarity to the Fe3B phase. The chemical short-range ordering (SRO) structure of amorphous alloys exhibits heredity to corresponding (meta)stable crystal phases. The unique spatial orientation structure of the metastable Fe3B phase is the structural origin of the amorphous nature. This study can guide the composition design of Fe-metalloid magnetic amorphous alloys. The design of materials with excellent magnetic properties originates from a deep understanding of precise composition control and temperature disturbance mechanism.
中文翻译:
铁类非晶合金中本征磁参数与亚稳Fe3B相结构的关系及关键作用
非晶结构的固有异质性源于成分,结构决定了非晶磁体的磁性能和结晶模型。以经典的Fe-B二元磁性非晶合金为基础,广泛研究了其结构与磁性能之间的关系。Fe-B二元非晶合金的堆垛结构在74 at.% - 87 at.% Fe范围内表现出不连续变化。其结构特征可以表示为Amor。Fe 3 B基质+Fe原子转变成Amor。随着Fe含量的增加,Fe基体+B原子。溶质原子均匀分布在非晶基体孔中,类似于单相固溶体结构。转变点对应于共晶结晶模型组成(Fe 82 B 18至Fe 83 B 17 )。高铁含量会放大磁矩对温度的敏感性。在给定的使用温度下,磁矩自旋的扰动效应会抵消增加Fe含量的有益效果,导致饱和磁化强度(M s)值降低。二元非晶Fe-B合金在75 at.% Fe附近获得最高居里温度,略小于相应的亚稳态Fe 3 B相,即非晶短程有序结构保持了与Fe 3最高的相似性B阶段。非晶合金的化学短程有序(SRO)结构表现出对相应(亚)稳定晶相的遗传性。亚稳Fe 3 B相独特的空间取向结构是非晶态的结构起源。该研究可以指导铁类金属磁性非晶合金的成分设计。具有优异磁性能的材料的设计源于对精确成分控制和温度扰动机制的深刻理解。