Science China Chemistry ( IF 10.4 ) Pub Date : 2023-10-18 , DOI: 10.1007/s11426-023-1742-6 Jianlin Jiang , Zhen Liu , Shuaijun Pan , Xinnian Xia , Bing Qin , Yang Hu , Xuxu Wang , Jiamin Lan , Yu Gu , Encai Ou , Weijian Xu , Joseph J. Richardson , Rui Guo
Metal–phthalocyanines are a class of catalytically active materials promising in energy conversion and storage fields (e.g., electrocatalysis). However, understanding and controlling the electrochemical properties in metal–phthalocyanine systems is challenging. Herein, we elucidate the electrocatalytic origins of a series of cobalt–phthalocyanine molecular catalysts and fine-tune their electronic properties at the atomic level, both experimentally and computationally. The interactions between the cobalt center and the local coordination environment are regulated by introducing either electron-donating or electron-withdrawing groups on the phthalocyanine ligand, and the spin–orbit splitting of cobalt is increased by ∼0.15 eV compared with the non-substituted ligand. Specifically, the aminated cobalt phthalocyanine-based electrocatalysts exhibit low free energies in the rate-determining steps of the oxygen reduction (−1.68 eV) and oxygen evolution reactions (0.37 eV). This contributes to the high electrocatalytic activity (e.g., a halfwave potential of 0.84 V and an overpotential of 0.30 V at 10 mA cm−2), featuring a high selectivity of a four-electron pathway (i.e., a negligible by-product of hydrogen peroxide). These catalysts also exhibit exceptional kinetic current density (Tafel slope of 100 mV dec−1) in oxygen reduction reactions, in addition to a superior power density (158 mW cm−2) and a high cycling stability (>1,300 cycles) in Zn–air batteries, outperforming the commercial Pt/C and/or RuO2 counterparts.
中文翻译:
调整钴酞菁的电子特性以进行氧还原和析出反应
金属酞菁是一类在能量转换和存储领域(例如电催化)有前途的催化活性材料。然而,理解和控制金属酞菁体系的电化学性质具有挑战性。在这里,我们阐明了一系列钴酞菁分子催化剂的电催化起源,并通过实验和计算在原子水平上微调它们的电子特性。通过在酞菁配体上引入给电子或吸电子基团来调节钴中心与局域配位环境之间的相互作用,与未取代的配体相比,钴的自旋轨道分裂增加了~0.15 eV 。具体来说,胺化钴酞菁基电催化剂在氧还原反应(-1.68 eV)和析氧反应(0.37 eV)的速率决定步骤中表现出较低的自由能。这有助于实现高电催化活性(例如,10 mA cm -2下的半波电势为0.84 V,超电势为0.30 V ),具有四电子途径的高选择性(即,氢的副产物可以忽略不计)过氧化物)。这些催化剂在氧还原反应中还表现出优异的动力学电流密度(塔菲尔斜率为 100 mV dec -1),此外在 Zn– 中还具有出色的功率密度(158 mW cm -2)和高循环稳定性(>1,300 次循环)。空气电池,优于商业 Pt/C 和/或 RuO 2同类产品。