Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-10-19 , DOI: 10.1016/j.jcta.2023.105828 Joshua W. Caldwell , Kevin G. Hare , Tomáš Vávra
We study representations of integral vectors in a number system with a matrix base M and vector digits. We focus on the case when M is equal or similar to , the Jordan block with eigenvalue 1 and dimension n. If , we classify all digit sets of size two allowing representation for all of . For with , we show that a digit set of size three suffice to represent all of . For bases M similar to , , we construct a digit set of size n such that all of is represented. The language of words representing the zero vector with and the digits is shown not to be context-free, but to be recognizable by a Turing machine with logarithmic memory.
中文翻译:
基数类似于某些乔丹块的非扩张矩阵数系统
我们研究具有矩阵基M和向量数字的数字系统中积分向量的表示。我们关注M等于或相似的情况,特征值为 1 且维度为n的 Jordan 块。如果,我们对所有大小为 2 的数字集进行分类,允许表示所有。为了和,我们证明大小为 3 的数字集足以表示所有。对于碱基M类似于,,我们构造一个大小为n的数字集,使得所有被代表。表示零向量的单词的语言和数字被证明不是上下文无关的,而是可以被具有对数内存的图灵机识别。