当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Non-expansive matrix number systems with bases similar to certain Jordan blocks
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-10-19 , DOI: 10.1016/j.jcta.2023.105828
Joshua W. Caldwell , Kevin G. Hare , Tomáš Vávra

We study representations of integral vectors in a number system with a matrix base M and vector digits. We focus on the case when M is equal or similar to Jn, the Jordan block with eigenvalue 1 and dimension n. If M=J2, we classify all digit sets of size two allowing representation for all of Z2. For M=Jn with n3, we show that a digit set of size three suffice to represent all of Zn. For bases M similar to Jn, n2, we construct a digit set of size n such that all of Zn is represented. The language of words representing the zero vector with M=J2 and the digits (0,±1)T is shown not to be context-free, but to be recognizable by a Turing machine with logarithmic memory.



中文翻译:

基数类似于某些乔丹块的非扩张矩阵数系统

我们研究具有矩阵基M和向量数字的数字系统中积分向量的表示。我们关注M等于或相似的情况Jn,特征值为 1 且维度为n的 Jordan 块。如果中号=J2,我们对所有大小为 2 的数字集进行分类,允许表示所有Z2。为了中号=Jnn3,我们证明大小为 3 的数字集足以表示所有Zn。对于碱基M类似于Jn,n2,我们构造一个大小为n的数字集,使得所有Zn被代表。表示零向量的单词的语言中号=J2和数字0,±1时间被证明不是上下文无关的,而是可以被具有对数内存的图灵机识别。

更新日期:2023-10-19
down
wechat
bug