当前位置:
X-MOL 学术
›
Found. Comput. Math.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Construction of $$C^r$$ Conforming Finite Element Spaces in Any Dimension
Foundations of Computational Mathematics ( IF 2.5 ) Pub Date : 2023-10-17 , DOI: 10.1007/s10208-023-09627-6 Jun Hu , Ting Lin , Qingyu Wu
中文翻译:
任意维 $$C^r$$ 相容有限元空间的构造
更新日期:2023-10-17
Foundations of Computational Mathematics ( IF 2.5 ) Pub Date : 2023-10-17 , DOI: 10.1007/s10208-023-09627-6 Jun Hu , Ting Lin , Qingyu Wu
This paper proposes a construction of \(C^r\) conforming finite element spaces with arbitrary r in any dimension. It is shown that if \(k \ge 2^{d}r+1\) the space \({\mathcal {P}}_k\) of polynomials of degree \(\le k\) can be taken as the shape function space of \(C^r\) finite element spaces in d dimensions. This is the first work on constructing such \(C^r\) conforming finite elements in any dimension in a unified way.
中文翻译:
任意维 $$C^r$$ 相容有限元空间的构造
本文提出了在任意维度上构造任意r的\(C^r\)符合有限元空间。结果表明,如果\(k \ge 2^{d}r+1\)次数为 \ (\le k \)的多项式的空间\({\mathcal {P}}_k \)可以看作d维\(C^r\)有限元空间的形函数空间。这是第一个以统一的方式构造任意维度的\(C^r\)符合有限元的工作。