Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-10-18 , DOI: 10.1016/j.cej.2023.146764 Leila Naderi , Saeed Shahrokhian
Wire/fiber-type micro-supercapacitors (micro-SCs) have great potentials in next-generation wearable and portable energy supply devices, due to their low weight, high flexibility, small size and excellent reliability. Herein, we designed 2D-3D S-doped CoZnNi-OH/CuCoP positive microelectrode with hierarchical structure on 1D metal fiber substrate for high-capacitance fibrous micro-SCs. Such unique architecture, which 2D S-doped CoZnNi-OH nanosheet arrays vertically aligned on 1D Cu wire garnished with 3D dendritic CuCoP through CoZn-MOF template, exposed ample electroactive sites, created robust electrical and mechanical joint between nanostructured material and metal fiber, and promote the transport/diffusion rate of ions. The achieved 2D-3D S-doped CoZnNi-OH/CuCoP/CW microelectrode exhibited the areal/volumetric/length capacitances of 2.9 F cm−2, 290.07 F cm−3, and 348 mF cm−1 at 4 mA cm−2, respectively, which is 18 times of the sulfide directly co-electrodeposited on 3D CuCoP foam without MOF template. Besides, negative microelectrode was prepared through electrochemical deposition of V2O5-PPy on 1D carbon fiber substrate decorated with rGO-nanocellulose (NC) hydrogel. The electrical double layer capacitance behavior combined with pseudocapacitive properties enhances charge storage performance of fibrous microelectrode in terms of specific capacitance, cycle stability and rate capability. The fabricated solid-state 2D-3D S-doped CoZnNi-OH/CuCoP/CW//V2O5-PPy/rGO-NC/CF micro-SC presents high areal energy density of 127.62 µWh cm−2 at a power density of 1.83 mW cm−2 and durability (93.7 % retention after 5000 cycles) with excellent mechanical flexibility. Giving the versatility of 1D carbon/metal fiber substrates, template-assisted 3D architecture, MOF-derived sulfide nanoarrays, and NC chemical reactivity, the proposed strategy can be used for construction of other next-generation miniaturized portable electronics.
中文翻译:
基于树枝状CuCoP和V2O5-聚吡咯/纳米纤维素水凝胶上MOF辅助硫化物纳米阵列的线型柔性微型超级电容器
线/光纤型微型超级电容器(micro-SC)由于其重量轻、灵活性高、尺寸小和出色的可靠性,在下一代可穿戴和便携式供能设备中具有巨大潜力。在此,我们设计了在一维金属纤维基底上具有分层结构的2D-3D S掺杂CoZnNi-OH/CuCoP正微电极,用于高电容纤维微SC。这种独特的结构,2D S掺杂的CoZnNi-OH纳米片阵列在1D Cu线上垂直排列,通过CoZn-MOF模板装饰有3D树枝状CuCoP,暴露了充足的电活性位点,在纳米结构材料和金属纤维之间创建了坚固的电气和机械接头,并且促进离子的传输/扩散速率。所获得的2D-3D S掺杂CoZnNi-OH/CuCoP/CW微电极在4 mA cm -2下表现出2.9 F cm -2、290.07 F cm -3和348 mF cm -1的面积/体积/长度电容,分别是在没有 MOF 模板的 3D CuCoP 泡沫上直接共电沉积硫化物的 18 倍。此外,通过在装饰有rGO-纳米纤维素(NC)水凝胶的一维碳纤维基底上电化学沉积V 2 O 5 -PPy制备负微电极。双层电容行为与赝电容特性相结合,增强了纤维微电极在比电容、循环稳定性和倍率性能方面的电荷存储性能。制备的固态2D-3D S掺杂CoZnNi-OH/CuCoP/CW//V 2 O 5 -PPy/rGO-NC/CF micro-SC在功率密度下呈现出127.62 µWh cm -2的高面能量密度1.83 mW cm -2和耐久性(5000 次循环后保留率为 93.7%)以及优异的机械柔韧性。鉴于 1D 碳/金属纤维基材、模板辅助 3D 结构、MOF 衍生的硫化物纳米阵列和 NC 化学反应性的多功能性,所提出的策略可用于构建其他下一代小型化便携式电子产品。