当前位置: X-MOL 学术Comm. Pure Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Log-Sobolev inequality for near critical Ising models
Communications on Pure and Applied Mathematics ( IF 3.1 ) Pub Date : 2023-10-16 , DOI: 10.1002/cpa.22172
Roland Bauerschmidt 1 , Benoit Dagallier 1
Affiliation  

For general ferromagnetic Ising models whose coupling matrix has bounded spectral radius, we show that the log-Sobolev constant satisfies a simple bound expressed only in terms of the susceptibility of the model. This bound implies very generally that the log-Sobolev constant is uniform in the system size up to the critical point (including on lattices), without using any mixing conditions. Moreover, if the susceptibility satisfies the mean-field bound as the critical point is approached, our bound implies that the log-Sobolev constant depends polynomially on the distance to the critical point and on the volume. In particular, this applies to the Ising model on subsets of when .

中文翻译:

近临界 Ising 模型的 Log-Sobolev 不等式

对于耦合矩阵具有有界谱半径的一般铁磁 Ising 模型,我们表明 log-Sobolev 常数满足仅以模型磁化率表示的简单界限。这个界限非常普遍地意味着,在不使用任何混合条件的情况下,log-Sobolev 常数在系统尺寸中直到临界点(包括在晶格上)都是均匀的。此外,如果磁化率在接近临界点时满足平均场界限,则我们的界限意味着 log-Sobolev 常数多项式取决于到临界点的距离和体积。特别是,这适用于子集上的 Ising 模型什么时候
更新日期:2023-10-16
down
wechat
bug