当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Switchable optical trapping based on vortex-pair beams generated by a polarization-multiplexed dielectric metasurface
Nanoscale ( IF 5.8 ) Pub Date : 2023-10-16 , DOI: 10.1039/d3nr04125e
Hongliang Li 1, 2 , Jisen Wen 3 , Song Gao 4 , Duk-Yong Choi 5 , Jin Tae Kim 6 , Sang-Shin Lee 1, 2
Affiliation  

Optical trapping is a state-of-the-art methodology that plays an integral role in manipulating and investigating microscopic objects but faces formidable challenges in multiparticle trapping, flexible manipulation, and high-integration applications. In this study, we propose and demonstrate a switchable optical scheme for trapping microparticles incorporating disparate vortex-pair beams generated by a polarization-multiplexed metasurface. The miniaturized all-dielectric metasurface, which comprises an array of titanium dioxide nanoposts, was manufactured and characterized to provide polarization-tuned two-fold vortex-pair beams. The profiles of the created vortices can be flexibly tailored by adjusting the combination of topological charges and the separation among phase singularities. Under transverse electric polarized light conditions, a vortex-pair beam with opposite topological charge combinations traps a single microparticle within one beam spot, while under transverse magnetic polarization conditions, two microparticles are captured simultaneously by a vortex-pair beam with the same topological charge signs. The proposed switchable trapping scheme (incorporating a vortex-pair light beam) is expected to feature enhanced integration and flexible manipulation of multiple particles with potential applications in biophysics, nanotechnology, and photonics.

中文翻译:

基于偏振复用介电超表面产生的涡旋对光束的可切换光捕获

光捕获是一种最先进的方法,在操纵和研究微观物体方面发挥着不可或缺的作用,但在多粒子捕获、灵活操纵和高集成应用方面面临着巨大的挑战。在这项研究中,我们提出并演示了一种可切换的光学方案,用于捕获包含由偏振复用超表面产生的不同涡旋对光束的微粒。微型化全介电超表面由二氧化钛纳米柱阵列组成,经过制造和表征,可提供偏振调谐的双倍涡旋对光束。通过调整拓扑电荷的组合和相奇点之间的分离,可以灵活地定制所创建的涡旋的轮廓。在横向电偏振光条件下,具有相反拓扑电荷组合的涡旋对光束将单个微粒捕获在一个束斑内,而在横向磁偏振条件下,具有相同拓扑电荷符号的涡旋对光束同时捕获两个微粒。所提出的可切换捕获方案(结合涡旋对光束)预计将具有增强的集成性和对多个粒子的灵活操纵的特点,在生物物理学、纳米技术和光子学方面具有潜在的应用。
更新日期:2023-10-17
down
wechat
bug