Genomics ( IF 3.4 ) Pub Date : 2023-10-14 , DOI: 10.1016/j.ygeno.2023.110727 Shanshan Zhang 1 , Wenzhong Yang 1 , Jian Chen 1 , Chuanguang Zhang 1 , Siqi Zhang 2 , Lanjing Gao 3
Scleroderma yunnanense, an ectomycorrhizal fungus, is a popular edible mushroom within the Yunnan Province of Southwest China that holds great ecological and economic implications. However, despite its significance, there remains limited information about this species. Therefore, we sequenced S. yunnanense genome to identify the functional genes of S. yunnanense involved in secondary metabolite and carbohydrate production pathways. First, we present the 40.43 Mb high-quality reference genome for S. yunnanense, distributed across 35 contigs; moreover, the N50 contig size was found to reach 3.31 Mb and contained 8877 functional genes. Finally, genome annotation was conducted to compare the functional genes of S. yunnanense with protein sequences from different publicly available databases. Taken together, we identified 12 biosynthetic gene clusters across 10 contigs; among these were 13 key mevalonate (MVA) pathway enzymes, a key tyrosinase enzyme in the 3,4-dihydroxyphenylalanine (DOPA) pathway that is responsible for producing DOPA melanins, and 16 enzymes involved in uridine diphosphate glucose biosynthesis. Overall, this study presents the first genome assembly and annotation of S. yunnanense; ultimately, this information will be important in the elucidation of the biological activities and artificial domestication of this fungus.