当前位置: X-MOL 学术ACS ES&T Water › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous 15N Online Analysis in NH4+, NO2–, NO3–, and N2O to Trace N2O Production Pathways in Nitrogen-Polluted Aqueous Environments
ACS ES&T Water ( IF 4.8 ) Pub Date : 2023-10-11 , DOI: 10.1021/acsestwater.3c00216
Kun Huang 1 , Wolfram Eschenbach 1 , Jing Wei 1 , Damian Hausherr 2 , Claudia Frey 3 , André Kupferschmid 4 , Jens Dyckmans 5 , Adriano Joss 2 , Moritz F. Lehmann 3 , Joachim Mohn 1
Affiliation  

Engineered nitrogen (N) removal processes in water treatment plants and N-transformation reactions in polluted environments represent prominent sources of the potent greenhouse gas, nitrous oxide (N2O). The relevance of microbial and abiotic formation pathways can be assessed by using 15N tracer techniques. While 15N–N2O analysis with optical analyzers is straightforward, the quantification of atom % 15N of inorganic N compounds, such as ammonium (NH4+), nitrite (NO2), and nitrate (NO3), requires discrete sample analyses that are time-consuming and labor-intensive. In this study, we developed an automated sample preparation unit, coupled to a membrane inlet quadrupole mass spectrometer, for the online, quasi-simultaneous analysis of atom % 15N in NH4+, NO2, and NO3. This technique was designed and validated for 15N-spiking applications at moderate (100–200 μmol L–1, 1 atom % 15N) to high (2–3 mmol L–1, 33 atom % 15N) dissolved inorganic N concentrations typically encountered in sewer systems or contaminated watersheds. The high potential of the developed system, in combination with 15N–N2O analysis by Fourier-transform infrared spectroscopy, to constrain N transformations and sources of N2O was demonstrated in a feasibility study, where nitrifier denitrification was identified as the primary N2O formation pathway during the partial NH4+ oxidation to NO2 in a lab-scale sequencing batch reactor.

中文翻译:

同时对 NH4+、NO2–、NO3– 和 N2O 进行 15N 在线分析,追踪氮污染水环境中 N2O 的产生途径

水处理厂中的工程脱氮 (N) 过程和污染环境中的氮转化反应是强效温室气体一氧化二氮 (N 2 O) 的主要来源。微生物和非生物形成途径的相关性可以通过使用15 N 示踪技术来评估。虽然使用光学分析仪进行15 N–N 2 O 分析非常简单,但无机 N 化合物(例如铵 (NH 4 + )、亚硝酸盐 (NO 2 ) 和硝酸盐 (NO 3 – ))的原子% 15 N的定量,需要进行离散样本分析,这既费时又费力。在本研究中,我们开发了一种自动化样品制备装置,与膜入口四极杆质谱仪联用,用于在线准同时分析NH 4 +、NO 2 -和 NO 3 -中的原子% 15 N。该技术针对中等(100–200 μmol L –1 , 1 原子 % 15 N)至高(2–3 mmol L –1 , 33 原子 % 15 N)溶解无机氮浓度的15 个N 加标应用而设计和验证通常在下水道系统或受污染的流域中遇到。可行性研究证明了所开发的系统与傅里叶变换红外光谱的15 N-N 2 O 分析相结合,限制 N 转化和 N 2 O 来源的巨大潜力,其中硝化器反硝化被确定为主要因素。在实验室规模的序批式反应器中, NH 4 +部分氧化为 NO 2期间的N 2 O 形成途径。
更新日期:2023-10-11
down
wechat
bug