当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cryptic Isomerization in Diterpene Biosynthesis and the Restoration of an Evolutionarily Defunct P450
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-10-09 , DOI: 10.1021/jacs.3c09446 Zining Li 1 , Baofu Xu 1 , Tyler A Alsup 1 , Xiuting Wei 1 , Wenbo Ning 1 , Daniel G Icenhour 1 , Michelle A Ehrenberger 1 , Ion Ghiviriga 1 , Bao-Doan Giang 1 , Jeffrey D Rudolf 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-10-09 , DOI: 10.1021/jacs.3c09446 Zining Li 1 , Baofu Xu 1 , Tyler A Alsup 1 , Xiuting Wei 1 , Wenbo Ning 1 , Daniel G Icenhour 1 , Michelle A Ehrenberger 1 , Ion Ghiviriga 1 , Bao-Doan Giang 1 , Jeffrey D Rudolf 1
Affiliation
Biosynthetic modifications of the 6/10-bicyclic hydrocarbon skeletons of the eunicellane family of diterpenoids are unknown. We explored the biosynthesis of a bacterial trans-eunicellane natural product, albireticulone A (3), and identified a novel isomerase that catalyzes cryptic isomerization in the biosynthetic pathway. We also assigned functions of two cytochromes P450 that oxidize the eunicellane skeleton, one of which was a naturally evolved non-functional P450 that, when genetically repaired, catalyzes allylic oxidation. Finally, we described the chemical susceptibility of the trans-eunicellane skeleton to undergo Cope rearrangement to yield inseparable atropisomers.
中文翻译:
二萜生物合成中的隐蔽异构化和进化上已失效的 p450 的恢复
二萜类化合物 Eunicellane 家族的 6/10-双环烃骨架的生物合成修饰尚不清楚。我们探索了细菌反式烯单胞菌天然产物 albireticulone A (3) 的生物合成,并鉴定了一种在生物合成途径中催化隐蔽异构化的新型异构酶。我们还分配了两种细胞色素 P450 的功能,它们会氧化 eunicellane 骨架,其中一种是自然进化的非功能性 P450,当基因修复时,它会催化烯丙基氧化。最后,我们描述了反式单胞菌骨架发生 Cope 重排以产生不可分离的促异构体的化学敏感性。
更新日期:2023-10-09
中文翻译:
二萜生物合成中的隐蔽异构化和进化上已失效的 p450 的恢复
二萜类化合物 Eunicellane 家族的 6/10-双环烃骨架的生物合成修饰尚不清楚。我们探索了细菌反式烯单胞菌天然产物 albireticulone A (3) 的生物合成,并鉴定了一种在生物合成途径中催化隐蔽异构化的新型异构酶。我们还分配了两种细胞色素 P450 的功能,它们会氧化 eunicellane 骨架,其中一种是自然进化的非功能性 P450,当基因修复时,它会催化烯丙基氧化。最后,我们描述了反式单胞菌骨架发生 Cope 重排以产生不可分离的促异构体的化学敏感性。