当前位置:
X-MOL 学术
›
Geom. Funct. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Concentration of invariant means and dynamics of chain stabilizers in continuous geometries
Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2023-10-12 , DOI: 10.1007/s00039-023-00651-w Friedrich Martin Schneider
中文翻译:
连续几何形状中链稳定剂的不变均值和动力学浓度
更新日期:2023-10-12
Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2023-10-12 , DOI: 10.1007/s00039-023-00651-w Friedrich Martin Schneider
We prove a concentration inequality for invariant means on topological groups, namely for such adapted to a chain of amenable topological subgroups. The result is based on an application of Azuma’s martingale inequality and provides a method for establishing extreme amenability. Building on this technique, we exhibit new examples of extremely amenable groups arising from von Neumann’s continuous geometries. Along the way, we also answer a question by Pestov on dynamical concentration in direct products of amenable topological groups.
中文翻译:
连续几何形状中链稳定剂的不变均值和动力学浓度
我们证明了拓扑群上不变均值的集中不等式,即适应于一系列顺应的拓扑子群的集中不等式。该结果基于 Azuma 鞅不等式的应用,并提供了一种建立极端顺应性的方法。在此技术的基础上,我们展示了由冯·诺依曼的连续几何产生的极其顺从的群的新例子。在此过程中,我们还回答了佩斯托夫关于顺应拓扑群的直积的动态集中的问题。