当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reversible Zn electrodeposition enabled by interfacial chemistry manipulation for high-energy anode-free Zn batteries
Materials Today ( IF 21.1 ) Pub Date : 2023-10-10 , DOI: 10.1016/j.mattod.2023.09.008
Yongling An , Bingang Xu , Yuan Tian , Hengtao Shen , Quanyan Man , Xinlong Liu , Yujue Yang , Meiqi Li

Aqueous Zn batteries have attracted intensive interest in terms of the high safety and sustainable raw materials with low cost. However, the excess use of Zn anode greatly limits the practical energy density of batteries and arouses a threat to their real-life application. Here, a robust heterointerface composed of 0D metal nanodots and 2D metal carbide nanosheets with triple synergistic effects is designed to manipulate interfacial chemistry for anode-free Zn batteries. An interface of in situ anchoring ultrafine Sn nanodots on Na+ decorated MXene nanosheets is used as a model. The 2D Na-MXene promotes the Zn plating/stripping kinetics and homogenizes the distributions of electric field and ion flux. The high-affinity Zn binding sites of 0D Sn nanodots reduce the plating energy barrier and consequently manipulate the uniform Zn nucleation/growth. The in situ formed ZnF2 layer during Zn plating allows Zn ions to diffuse and shields side reactions. Consequently, the stable Zn plating/stripping with a high accumulated areal capacity of 5,000 mAh cm−2 is realized at high current density and plating capacity (10 mA cm−2∼20 mAh cm−2). Benefitting from triply synergistic effects derived from built cooperative interfaces, an anode-free Zn cell is constructed, proving ameliorative cyclic stability.



中文翻译:

通过界面化学操作实现高能无阳极锌电池的可逆锌电沉积

水系锌电池因其高安全性和低成本的可持续原材料而引起了人们的广泛兴趣。然而,锌负极的过量使用极大地限制了电池的实际能量密度,对其实际应用产生了威胁。在这里,由具有三重协同效应的 0D 金属纳米点和 2D 金属碳化物纳米片组成的强大异质界面被设计用于操纵无阳极锌电池的界面化学。使用Na +修饰的 MXene 纳米片上原位锚定超细 Sn 纳米点的界面作为模型。2D Na-MXene 促进镀锌/剥离动力学并使电场和离子通量的分布均匀化。0D Sn 纳米点的高亲和力 Zn 结合位点降低了电镀能垒,从而控制均匀的 Zn 成核/生长。镀锌过程中原位形成的ZnF 2层允许Zn离子扩散并屏蔽副反应因此,在高电流密度和电镀容量(10 mA cm -2~20 mAh cm -2)下实现了具有5,000 mAh cm -2高累积面积容量的稳定的Zn电镀/剥离。受益于构建的协同界面产生的三重协同效应,构建了无阳极锌电池,证明了循环稳定性的改善。

更新日期:2023-10-11
down
wechat
bug