当前位置:
X-MOL 学术
›
Appl. Catal. B Environ. Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Adjusting inter-semiconductor barrier height via crystal plane engineering: Crystalline face exposed single crystal cadmium sulfide augmentative S-scheme heterojunctions for efficiently photocatalytic hydrogen production
Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2023-10-08 , DOI: 10.1016/j.apcatb.2023.123373 Xuanpu Wang , Zhiliang Jin
Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2023-10-08 , DOI: 10.1016/j.apcatb.2023.123373 Xuanpu Wang , Zhiliang Jin
The design of crystalline face engineered photocatalysts can modulate the catalytic activity at the microscopic scale. The exposure ratio of (100), (002) and (101) crystal planes of CdS with visible light activity was adjusted by crystal plane engineering. Density functional theory (DFT) calculations and experiments show that the fully exposed (002) surface CdS-L (Leaf-like CdS) has excellent hydrogen evolution activity. The use of the interface heterojunction strategy can greatly mobilize the electron flow between CdS-L and CoS S-scheme heterojunction compound semiconductors by changing the potential barrier difference. The CoS/CdS-L composite photocatalyst exhibits amazing hydrogen evolution activity under 5 W white light irradiation, and the hydrogen production rate can reach 19.22 mmol·g·h. The results of in situ radiation XPS tests and comparative experiments show that the catalysts with more exposed crystal planes on the basis of constructing S-scheme heterojunctions can provide more active sites and have stronger reactivity. The use of crystal facet engineering effect and interfacial heterojunction strategy lays the foundation for the structural design and large-scale application of highly active visible light catalysts.
中文翻译:
通过晶面工程调整半导体间势垒高度:晶面暴露的单晶硫化镉增强S型异质结,用于高效光催化制氢
晶面工程光催化剂的设计可以在微观尺度上调节催化活性。通过晶面工程调整具有可见光活性的CdS的(100)、(002)和(101)晶面的曝光比例。密度泛函理论(DFT)计算和实验表明,完全暴露的(002)表面CdS-L(Leaf-like CdS)具有优异的析氢活性。采用界面异质结策略可以通过改变势垒差来极大地调动CdS-L和CoS S型异质结化合物半导体之间的电子流。 CoS/CdS-L复合光催化剂在5 W白光照射下表现出惊人的析氢活性,产氢速率可达19.22 mmol·g·h。原位辐射XPS测试和对比实验结果表明,在构建S型异质结的基础上暴露更多晶面的催化剂可以提供更多的活性位点,具有更强的反应活性。晶面工程效应和界面异质结策略的利用为高活性可见光催化剂的结构设计和大规模应用奠定了基础。
更新日期:2023-10-08
中文翻译:
通过晶面工程调整半导体间势垒高度:晶面暴露的单晶硫化镉增强S型异质结,用于高效光催化制氢
晶面工程光催化剂的设计可以在微观尺度上调节催化活性。通过晶面工程调整具有可见光活性的CdS的(100)、(002)和(101)晶面的曝光比例。密度泛函理论(DFT)计算和实验表明,完全暴露的(002)表面CdS-L(Leaf-like CdS)具有优异的析氢活性。采用界面异质结策略可以通过改变势垒差来极大地调动CdS-L和CoS S型异质结化合物半导体之间的电子流。 CoS/CdS-L复合光催化剂在5 W白光照射下表现出惊人的析氢活性,产氢速率可达19.22 mmol·g·h。原位辐射XPS测试和对比实验结果表明,在构建S型异质结的基础上暴露更多晶面的催化剂可以提供更多的活性位点,具有更强的反应活性。晶面工程效应和界面异质结策略的利用为高活性可见光催化剂的结构设计和大规模应用奠定了基础。