当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal-Based (oxy)Hydroxide
Advanced Science ( IF 14.3 ) Pub Date : 2023-10-09 , DOI: 10.1002/advs.202303321
Yu-Han Wang 1 , Lei Li 1 , Jinghui Shi 1 , Meng-Yuan Xie 1 , Jianhang Nie 1 , Gui-Fang Huang 1 , Bo Li 1 , Wangyu Hu 2 , Anlian Pan 2 , Wei-Qing Huang 1
Affiliation  

The oxygen evolution reaction (OER) activity of transition metal (TM)-based (oxy)hydroxide is dominated by the number and nature of surface active sites, which are generally considered to be TM atoms occupying less than half of surface sites, with most being inactive oxygen atoms. Herein, based on an in situ competing growth strategy of bimetallic ions and OH ions, a facile one-step method is proposed to modulate oxygen defects in NiFe-layered double hydroxide (NiFe-LDH)/FeOOH heterostructure, which may trigger the single lattice oxygen mechanism (sLOM). Interestingly, by only varying the addition of H2O2, one can simultaneously regulate the concentration of oxygen defects, the valence of metal sites, and the ratio of components. The proper oxygen defects promote synergy between the adsorbate evolution mechanism (AEM, metal redox chemistry) and sLOM (oxygen redox chemistry) of OER in NiFe-based (oxy)hydroxide, practically maximizing the use of surface TM and oxygen atoms as active sites. Consequently, the optimal NiFe-LDH/FeOOH heterostructure outperforms the reported non-noble OER catalysts in electrocatalytic activity, with an overpotential of 177 mV to deliver a current density of 20 mA cm−2 and high stability. The novel strategy exemplifies a facile and versatile approach to designing highly active TM-LDH-based OER electrocatalysts for energy and environmental applications.

中文翻译:

氧缺陷工程促进过渡金属基(氧)氢氧化物中吸附质演化与 OER 单晶格氧机制之间的协同作用

过渡金属(TM)基(羟基)氢氧化物的析氧反应(OER)活性主要取决于表面活性位点的数量和性质,通常认为TM原子占据不到一半的表面位点,其中大多数为TM原子。是不活泼的氧原子。在此,基于双金属离子和 OH -离子的原位竞争生长策略,提出了一种简便的一步法来调节 NiFe 层状双氢氧化物(NiFe-LDH)/FeOOH 异质结构中的氧缺陷,这可能会触发单晶格氧机制(sLOM)。有趣的是,仅通过改变H 2 O 2的添加量,就可以同时调节氧缺陷的浓度、金属位点的价态和组分的比例。适当的氧缺陷促进了NiFe基(羟基)氢氧化物中OER的吸附质演化机制(AEM,金属氧化还原化学)和sLOM(氧氧化还原化学)之间的协同作用,实际上最大限度地利用了表面TM和氧原子作为活性位点。因此,最佳的NiFe-LDH/FeOOH异质结构在电催化活性方面优于已报道的非贵金属OER催化剂,其过电势为177 mV,可提供20 mA cm -2的电流密度和高稳定性。这种新颖的策略体现了一种简单且通用的方法来设计用于能源和环境应用的高活性 TM-LDH 基 OER 电催化剂。
更新日期:2023-10-09
down
wechat
bug