通过简单的原位生长方法合成了精心设计的形貌调节的 MOF 模板化 Co 3 O 4在二氧化钛纳米线(TiO 2 NW)上,具有紧密的界面接触,可实现高效的 CO 2甲烷化。系统地研究了0D Co 3 O 4与可还原的1D TiO 2 NWs的协同效应以及Ni/Co活性金属对于CO 2甲烷化的作用。TiO 2上Ni分散原位生长Co 3 O 4性能比较进一步探索了 NW(Insitu-10N7CT)及其机械组装的对应物(M−10N7CT)。原位生长的ZIF-67充当牺牲模板来生产具有高度分散的Ni活性位点的Co 3 O 4以提高CH 4产量。通过调节形态, 与 M−10N7CT (X CO2 = 91.45 %,S CH4 = 98.42) 相比,0D Co 3 O 4促进了 Insitu-10N7CT (X CO2 = 97.42 %,S CH4 = 99.29 %) 优异的甲烷化性能,因为Ni、Co 和 Ti 物质之间的紧密界面接触。相比之下,MOF 衍生的复合材料显示出更高的 CH 4产率高于未煅烧的 MOF 纳米复合材料。这是因为高反应温度导致ZIF-67十二面体结构快速塌陷,导致甲烷化性能降低。Insitu-10N7CT表现出较高的还原性,产生Ni-Co-Ti的低价氧化/金属态,导致高密度的氧空位(O v)。最佳反应温度为350 °C,气时空速为9,400 mL g cat -1 h -1,表明反应物有效接触并将CO 2转化为CH 4。由于 Co 3 O 4的逐渐减少,Insitu-10N7CT 复合材料表现出长达 100 小时运行时间的耐用性。因此,新型 MOF 模板三元纳米复合材料揭示了一种调节 MOF 衍生物结构的简便方法,同时增强强界面相互作用,从而实现高效可再生燃料生产。
"点击查看英文标题和摘要"
Well-Designed morphology regulated ZIF-67 derived 0D/1D Co3O4@TiO2 NWs integrated with in-situ grown Ni/Co-Active metals for Low-Temperature driven CO2 methanation
Well-designed morphology regulated MOF-templated Co3O4 over titanium dioxide nanowires (TiO2 NWs) boasting intimate interfacial contact for highly efficient CO2 methanation was synthesized via a facile in-situ grown approach. The synergistic effect of 0D Co3O4 with reducible 1D TiO2 NWs and the role of Ni/Co-active metals were systematically investigated for CO2 methanation. The performance comparison of the Ni dispersed in-situ grown Co3O4 on TiO2 NWs (Insitu-10N7CT) and its mechanically assembled counterpart (M−10N7CT) was further explored. The in-situ grown ZIF-67 acts as a sacrificial template to produce Co3O4 with high dispersion of Ni active sites to enhance CH4 production. By regulating the morphology, 0D Co3O4 promoted a superior methanation performance for Insitu-10N7CT (XCO2 = 97.42 %, SCH4 = 99.29 %) compared to M−10N7CT (XCO2 = 91.45 %, SCH4 = 98.42) due to intimate interfacial contact between the Ni, Co, and Ti species. Comparatively, the MOF-derived composites displayed much higher CH4 yield than uncalcined MOF nanocomposites. This is because the high reaction temperature caused a rapid collapse of the ZIF-67 dodecahedral structure, leading to a lower methanation performance. Insitu-10N7CT exhibited higher reducibility, generating low valence oxidation/metallic states of Ni-Co-Ti, leading to the high density of oxygen vacancies (Ov). An optimal reaction temperature of 350 °C and gas hourly space velocity of 9,400 mL gcat-1h−1 was revealed, suggesting an efficient reactant contact and CO2 conversion into CH4. The Insitu-10N7CT composite exhibited durability up to 100-hour time-on-stream due to the gradual reduction of Co3O4. Thus, the novel MOF-templated ternary nanocomposite revealed a facile method for regulating the structure of MOF derivatives while boosting strong interfacial interactions for efficient renewable fuel production.