当前位置:
X-MOL 学术
›
Optim. Control Appl. Methods
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An enhanced arithmetic optimization algorithm for optimal control of reactive power
Optimal Control Applications and Methods ( IF 2.0 ) Pub Date : 2023-10-03 , DOI: 10.1002/oca.3061 Shuvam Sahay 1 , Ramanaiah Upputuri 1 , Pooja Kumari 1 , Niranjan Kumar 1
Optimal Control Applications and Methods ( IF 2.0 ) Pub Date : 2023-10-03 , DOI: 10.1002/oca.3061 Shuvam Sahay 1 , Ramanaiah Upputuri 1 , Pooja Kumari 1 , Niranjan Kumar 1
Affiliation
In this article, an enhanced arithmetic optimization algorithm (EAOA) is utilized to resolve the optimal reactive power dispatch problem (ORPD) of power plants, which is a non-linear, non-smooth, complex optimization problem. Typically, it is formulated as a constrained optimal power flow problem. This paper utilizes the gamma distribution to generate initial random solutions, which improves the accuracy of the arithmetic optimization algorithm (AOA). The original mode of deviation of math optimizer accelerated (MOA) is replaced with the improved pattern of change in the prey's energy in Harris Hawk Optimization (HHO), which creates a superior balance between the exploration and exploitation of AOA. This paper implements logarithmic and exponential operators in place of division and multiplication operators, which improves the exploration ability of AOA and also utilizes the gamma distribution in the generation of random numbers, which are essential for the selection of operators in both search phase which enlarges the search area and improves the global optimum solution. A parametric analysis is performed on 10 benchmark functions for nine possible values before selecting the algorithm's initial parameters. A comparative statistical analysis along with Friedman's test is carried out on 23 benchmark functions to test the overall performance as compared to Sine-Cosine Algorithm (SCA), Swarm-Salp Algorithm, Grey Wolf Optimization (GWO), and basic Arithmetic Optimization Algorithm (AOA). EAOA is applied to the IEEE 57 bus system for optimal reactive power control. EAOA reports a significant reduction in a power loss of 23.2 MW, which is 18.596% smaller than the system's base case power loss of 28.5 MW as compared to Artificial Bee Colony (ABC), Firefly Algorithm (FA), Bat-inspired Algorithm (BAT), Cuckoo Search Algorithm (CSA), and Modified Ant Lion Algorithm (MALO) which reports a reduction in a power loss of 14.73%, 15.43%, 15.43%, 16.14%, and 16.14% respectively. EAOA reduces the TVD to 0.76 pu, compared to ABC, FA, BAT, CSA, and MALO, which minimizes the TVD to 0.84, 0.82, 0.88, 0.82, and 0.79, respectively. This proves that EAOA performs better in resolving ORCP problems regarding the quality of solutions and convergence. A detailed comparative statistical analysis of EAOA with CSA, BAT, and WOA (Whale Optimization Algorithm) is conducted in terms of Probability Distribution Functions (PDF) and Cumulative Distribution Functions (CDF), along with the Wilcoxson sign rank test, which proves that EAOA gives the solution with a higher degree of precision.
中文翻译:
无功功率优化控制的增强算术优化算法
本文采用增强算术优化算法(EAOA)来解决电厂最优无功调度问题(ORPD),这是一个非线性、非光滑、复杂的优化问题。通常,它被表述为约束最优潮流问题。本文利用伽玛分布生成初始随机解,提高了算术优化算法(AOA)的精度。数学优化器加速 (MOA) 的原始偏差模式被哈里斯霍克优化 (HHO) 中猎物能量变化的改进模式所取代,这在 AOA 的探索和利用之间创造了卓越的平衡。本文实现了对数和指数算子来代替除法和乘法算子,提高了AOA的探索能力,并且在随机数的生成中利用了伽玛分布,这对于扩大搜索阶段算子的选择至关重要。搜索区域并改进全局最优解。在选择算法的初始参数之前,对 10 个基准函数的 9 个可能值进行参数分析。对 23 个基准函数进行了比较统计分析和 Friedman 测试,以测试与正弦余弦算法 (SCA)、Swarm-Salp 算法、灰狼优化 (GWO) 和基本算术优化算法 (AOA) 相比的整体性能)。EAOA应用于IEEE 57总线系统以实现最佳无功功率控制。EAOA 报告称,与人工蜂群 (ABC)、萤火虫算法 (FA)、蝙蝠启发算法 (BAT) 相比,功率损耗显着降低了 23.2 MW,比系统基本情况功率损耗 28.5 MW 小 18.596% )、布谷鸟搜索算法(CSA)和改进蚁狮算法(MALO),其功率损耗分别降低了 14.73%、15.43%、15.43%、16.14% 和 16.14%。与 ABC、FA、BAT、CSA 和 MALO 相比,EAOA 将 TVD 降低至 0.76 pu,从而将 TVD 分别降至 0.84、0.82、0.88、0.82 和 0.79。这证明EAOA在解决ORCP问题上在解的质量和收敛性方面表现更好。通过概率分布函数(PDF)和累积分布函数(CDF)对EAOA与CSA、BAT和WOA(鲸鱼优化算法)进行了详细的比较统计分析,并结合Wilcoxson符号秩检验,证明了EAOA给出了精度更高的解。
更新日期:2023-10-03
中文翻译:
无功功率优化控制的增强算术优化算法
本文采用增强算术优化算法(EAOA)来解决电厂最优无功调度问题(ORPD),这是一个非线性、非光滑、复杂的优化问题。通常,它被表述为约束最优潮流问题。本文利用伽玛分布生成初始随机解,提高了算术优化算法(AOA)的精度。数学优化器加速 (MOA) 的原始偏差模式被哈里斯霍克优化 (HHO) 中猎物能量变化的改进模式所取代,这在 AOA 的探索和利用之间创造了卓越的平衡。本文实现了对数和指数算子来代替除法和乘法算子,提高了AOA的探索能力,并且在随机数的生成中利用了伽玛分布,这对于扩大搜索阶段算子的选择至关重要。搜索区域并改进全局最优解。在选择算法的初始参数之前,对 10 个基准函数的 9 个可能值进行参数分析。对 23 个基准函数进行了比较统计分析和 Friedman 测试,以测试与正弦余弦算法 (SCA)、Swarm-Salp 算法、灰狼优化 (GWO) 和基本算术优化算法 (AOA) 相比的整体性能)。EAOA应用于IEEE 57总线系统以实现最佳无功功率控制。EAOA 报告称,与人工蜂群 (ABC)、萤火虫算法 (FA)、蝙蝠启发算法 (BAT) 相比,功率损耗显着降低了 23.2 MW,比系统基本情况功率损耗 28.5 MW 小 18.596% )、布谷鸟搜索算法(CSA)和改进蚁狮算法(MALO),其功率损耗分别降低了 14.73%、15.43%、15.43%、16.14% 和 16.14%。与 ABC、FA、BAT、CSA 和 MALO 相比,EAOA 将 TVD 降低至 0.76 pu,从而将 TVD 分别降至 0.84、0.82、0.88、0.82 和 0.79。这证明EAOA在解决ORCP问题上在解的质量和收敛性方面表现更好。通过概率分布函数(PDF)和累积分布函数(CDF)对EAOA与CSA、BAT和WOA(鲸鱼优化算法)进行了详细的比较统计分析,并结合Wilcoxson符号秩检验,证明了EAOA给出了精度更高的解。