International Journal of Fuzzy Systems ( IF 3.6 ) Pub Date : 2023-10-06 , DOI: 10.1007/s40815-023-01587-x
Haofeng Li , Jun Zhang , Yuechao Ma
|
This paper is concerned with coupling memory sampled-data state-feedback control for T–S fuzzy systems with time-varying delays on the basic of the delay-product-type augmented Lyapunov–Krasovskii functional (LKF) method. The sampled-data control satisfies a Bernoulli distribution sequence and the sampling period is nonconstant. Furthermore, an augmented LKF included time-varying delay and sampling time is proposed to decrease the conservatism. The limiting conditions of some matrices in LKF are relaxed to make LKF more general. In addition, the integral inequality technique and weight matrix are used to make the results more flexible. The gain matrices of controller which guaranteed the asymptotically stable for system with \({H_\infty }\) performance is obtained. Finally, the validity of the results is verified by two numerical examples.
中文翻译:

模糊系统的耦合存储器采样数据状态反馈控制:延迟乘积型增强Lyapunov-Krasovskii函数方法
本文研究基于时变时滞 T-S 模糊系统的记忆采样数据状态反馈耦合控制,其基础是时滞乘积型增广 Lyapunov-Krasovskii 泛函 (LKF) 方法。采样数据控制满足伯努利分布序列并且采样周期是非恒定的。此外,提出了一种包括时变延迟和采样时间的增强 LKF 以降低保守性。放宽了LKF中一些矩阵的限制条件,使LKF更加通用。此外,还采用了积分不等式技术和权重矩阵,使结果更加灵活。保证系统渐近稳定的控制器增益矩阵\({H_\infty }\)获得性能。最后通过两个数值算例验证了结果的有效性。