当前位置: X-MOL 学术Comm. Pure Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stationary measure for the open KPZ equation
Communications on Pure and Applied Mathematics ( IF 3.1 ) Pub Date : 2023-10-05 , DOI: 10.1002/cpa.22174
Ivan Corwin 1 , Alisa Knizel 2
Affiliation  

We provide the first construction of stationary measures for the open KPZ equation on the spatial interval [0,1] with general inhomogeneous Neumann boundary conditions at 0 and 1 depending on real parameters u and v, respectively. When , we uniquely characterize the constructed stationary measures through their multipoint Laplace transform, which we prove is given in terms of a stochastic process that we call the continuous dual Hahn process. Our work relies on asymptotic analysis of Bryc and Wesołowski's Askey–Wilson process formulas for the open ASEP stationary measure (which in turn arise from Uchiyama, Sasamoto and Wadati's Askey-Wilson Jacobi matrix representation of Derrida et al.'s matrix product ansatz) in conjunction with Corwin and Shen's proof that open ASEP converges to open KPZ under weakly asymmetric scaling.

中文翻译:

开式 KPZ 方程的平稳测度

我们为空间区间 [0,1] 上的开式 KPZ 方程提供了平稳测度的第一个构造,其中一般非齐次诺依曼边界条件分别位于 0 和 1 处,具体取决于实际参数uv。什么时候,我们通过多点拉普拉斯变换独特地描述了构建的平稳测度,我们证明该变换是根据随机过程给出的,我们称之为连续对偶哈恩过程。我们的工作依赖于对开放 ASEP 平稳测度的 Bryc 和 Wesołowski 的 Askey-Wilson 过程公式的渐近分析(该公式又源自 Uchiyama、Sasamoto 和 Wadati 的 Askey-Wilson Jacobi 矩阵表示 Derrida 等人的矩阵乘积 ansatz)结合 Corwin 和 Shen 的证明,证明开放 ASEP 在弱非对称缩放下收敛于开放 KPZ。
更新日期:2023-10-05
down
wechat
bug