Journal of Energy Chemistry ( IF 14.0 ) Pub Date : 2023-10-04 , DOI: 10.1016/j.jechem.2023.09.030 Yaochen Song , Pengkai Tang , Yanjie Wang , Yi Wang , Linnan Bi , Qi Liang , Liang He , Qingyu Xie , Yiyong Zhang , Peng Dong , Yingjie Zhang , Yao Yao , Jiaxuan Liao , Sizhe Wang
The practical application of lithium-sulfur (Li-S) batteries, as promising next-generation batteries, is hindered by their shuttle effect and the slow redox kinetics. Herein, a tungsten and molybdenum nitride heterostructure functionalized with hollow metal-organic framework-derived carbon (W2N/Mo2N) was proposed as the sulfur host. The hollow spherical structure provides storage space for sulfur, enhances electrical conductivity, and inhibits volume expansion. The metal atoms in the nitrides bonded with lithium polysulfides (LiPSs) through Lewis covalent bonds, enhancing the high catalytic activity of the nitrides and effectively reducing the energy barrier of LiPSs redox conversion. Moreover, the high intrinsic conductivity of nitrides and the ability of the heterostructure interface to accelerate electron/ion transport improved the Li+ transmission. By leveraging the combined properties of strong adsorption and high catalytic activity, the sulfur host effectively inhibited the shuttle effect and accelerated the redox kinetics of LiPSs. High-efficiency Li+ transmission, strong adsorption, and the efficient catalytic conversion activities of LiPSs in the heterostructure were experimentally and theoretically verified. The results indicate that the W2N/Mo2N cathode provides stable, and long-term cycling (over 2000 cycles) at 3 C with a low attenuation rate of 0.0196% per cycle. The design strategy of a twinborn nitride heterostructure thus provides a functionalized solution for advanced Li-S batteries.
中文翻译:
用于锂硫电池的孪生氮化物异质结构增强路易斯共价键
锂硫(Li-S)电池作为有前途的下一代电池,其实际应用受到其穿梭效应和缓慢的氧化还原动力学的阻碍。在此,提出用中空金属有机骨架衍生的碳(W 2 N/Mo 2 N)功能化的钨和氮化钼异质结构作为硫主体。空心球形结构为硫提供储存空间,增强导电性,并抑制体积膨胀。氮化物中的金属原子通过路易斯共价键与多硫化锂(LiPSs)结合,增强了氮化物的高催化活性,有效降低了LiPSs氧化还原转化的能垒。此外,氮化物的高本征电导率和异质结构界面加速电子/离子传输的能力提高了Li +传输。通过利用强吸附性和高催化活性的综合特性,硫主体有效抑制了穿梭效应并加速了LiPSs的氧化还原动力学。异质结构中LiPSs的高效Li +传输、强吸附和高效催化转化活性得到了实验和理论验证。结果表明,W 2 N/Mo 2 N 阴极在 3 C 下提供稳定的长期循环(超过 2000 个循环),每个循环的衰减率为 0.0196%。因此,孪生氮化物异质结构的设计策略为先进的锂硫电池提供了功能化的解决方案。