当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimized Thermoelectric Performance and Plasticity of Ductile Semiconductor Ag2S0.5Se0.5 Via Dual-Phase Engineering
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-10-03 , DOI: 10.1002/aenm.202302551
Hao Wu 1 , Xiao‐Lei Shi 2 , Yuanqing Mao 2, 3, 4 , Meng Li 2 , Wei‐Di Liu 2, 5 , De‐Zhuang Wang 1 , Liang‐Cao Yin 1 , Min Zhu 1 , Yifeng Wang 6 , Jingui Duan 1 , Qingfeng Liu 1 , Zhi‐Gang Chen 2
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-10-03 , DOI: 10.1002/aenm.202302551
Hao Wu 1 , Xiao‐Lei Shi 2 , Yuanqing Mao 2, 3, 4 , Meng Li 2 , Wei‐Di Liu 2, 5 , De‐Zhuang Wang 1 , Liang‐Cao Yin 1 , Min Zhu 1 , Yifeng Wang 6 , Jingui Duan 1 , Qingfeng Liu 1 , Zhi‐Gang Chen 2
Affiliation
![]() |
Inorganic semiconductor Ag2S with excellent plasticity is highly desired in flexible and wearable thermoelectrics. However, the compromise between plasticity and thermoelectric performance limits the advances in Ag2S-based thermoelectric materials and their devices. Here, a 0.5 mol.% Ag2Te-alloyed Ag2S0.5Se0.5 bulk material is designed, which has a competitively high near-room-temperature figure of merit of ≈0.43 at 323 K and an ultra-high bending strain of ≈32.5% without cracks. Introducing Ag2Te can optimize the carrier concentration and mobility of the Ag2S0.5Se0.5 matrix due to its metal-like conducting features, leading to a maximum power factor of ≈6 µW cm−1 K−2. Simultaneously, Ag2Te induces Ag-poor amorphous phase boundaries, serving as buffer layers to enhance the overall plasticity. Moreover, such amorphous phase boundaries combined with multiscale phonon scattering sources can significantly suppress the lattice thermal conductivity to ≈0.28 W m−1 K−1 at 323 K, leading to a high figure of merit. This study demonstrates an innovative route to simultaneously boost the thermoelectric performance and plasticity of ductile semiconductors.
中文翻译:
通过双相工程优化延展性半导体 Ag2S0.5Se0.5 的热电性能和塑性
具有优异可塑性的无机半导体Ag 2 S在柔性和可穿戴热电材料中非常受欢迎。然而,可塑性和热电性能之间的折衷限制了Ag 2 S基热电材料及其器件的进步。这里,设计了一种 0.5 mol.% Ag 2 Te 合金的 Ag 2 S 0.5 Se 0.5块体材料,该材料在 323 K 下具有相当高的近室温品质因数 ≈0.43 和超高弯曲应变约 32.5% 无裂纹。由于其类金属的导电特性,引入Ag 2 Te可以优化Ag 2 S 0.5 Se 0.5基体的载流子浓度和迁移率,从而导致最大功率因数约6 µW cm -1 K -2。同时,Ag 2 Te诱发贫Ag非晶相边界,充当缓冲层以增强整体塑性。此外,这种非晶相边界与多尺度声子散射源相结合,可以在323 K下将晶格热导率显着抑制至约0.28 W m -1 K -1,从而获得高品质因数。这项研究展示了一种同时提高延性半导体热电性能和可塑性的创新途径。
更新日期:2023-10-03
中文翻译:

通过双相工程优化延展性半导体 Ag2S0.5Se0.5 的热电性能和塑性
具有优异可塑性的无机半导体Ag 2 S在柔性和可穿戴热电材料中非常受欢迎。然而,可塑性和热电性能之间的折衷限制了Ag 2 S基热电材料及其器件的进步。这里,设计了一种 0.5 mol.% Ag 2 Te 合金的 Ag 2 S 0.5 Se 0.5块体材料,该材料在 323 K 下具有相当高的近室温品质因数 ≈0.43 和超高弯曲应变约 32.5% 无裂纹。由于其类金属的导电特性,引入Ag 2 Te可以优化Ag 2 S 0.5 Se 0.5基体的载流子浓度和迁移率,从而导致最大功率因数约6 µW cm -1 K -2。同时,Ag 2 Te诱发贫Ag非晶相边界,充当缓冲层以增强整体塑性。此外,这种非晶相边界与多尺度声子散射源相结合,可以在323 K下将晶格热导率显着抑制至约0.28 W m -1 K -1,从而获得高品质因数。这项研究展示了一种同时提高延性半导体热电性能和可塑性的创新途径。