基于原位观测实验以及电磁动力学、流体动力学和热力学理论,建立了创新的数值模型来研究冷金属传递加脉冲(CMT+P)复合热源的传热机理。定量分析了电弧等离子体内的温度、电势、电流密度、速度和压力的分布。结果表明,CMT+P复合热源电弧等离子体的温度、电量、速度、压力等物理场不仅与输入电流有关,还与电极间的放电距离有关。电弧等离子体的物理场距离阳极越近,对电流变化的响应速度越快,时滞效应越弱。此外,两个电极之间的距离越近,温度越集中。不同时刻熔融区域表面对应的电位分布与电流密度呈负相关。随着短路阶段的完成,电弧等离子体被重新点燃并在电磁夹紧力的作用下向线端会聚。在线端再次产生高速轴向涡流,促进液态金属断面的收缩,加速自由熔滴的飞溅。此外,在脉冲阶段,衬底表面的温度、电势、电流密度、压力和速度的分布对输入电流具有时滞效应。不同时刻熔融区域表面对应的电位分布与电流密度呈负相关。随着短路阶段的完成,电弧等离子体被重新点燃并在电磁夹紧力的作用下向线端会聚。在线端再次产生高速轴向涡流,促进液态金属断面的收缩,加速自由熔滴的飞溅。此外,在脉冲阶段,衬底表面的温度、电势、电流密度、压力和速度的分布对输入电流具有时滞效应。不同时刻熔融区域表面对应的电位分布与电流密度呈负相关。随着短路阶段的完成,电弧等离子体被重新点燃并在电磁夹紧力的作用下向线端会聚。在线端再次产生高速轴向涡流,促进液态金属断面的收缩,加速自由熔滴的飞溅。此外,在脉冲阶段,衬底表面的温度、电势、电流密度、压力和速度的分布对输入电流具有时滞效应。电弧等离子体被重新点燃并在电磁夹紧力的作用下向线端会聚。在线端再次产生高速轴向涡流,促进液态金属断面的收缩,加速自由熔滴的飞溅。此外,在脉冲阶段,衬底表面的温度、电势、电流密度、压力和速度的分布对输入电流具有时滞效应。电弧等离子体被重新点燃并在电磁夹紧力的作用下向线端会聚。在线端再次产生高速轴向涡流,促进液态金属断面的收缩,加速自由熔滴的飞溅。此外,在脉冲阶段,衬底表面的温度、电势、电流密度、压力和速度的分布对输入电流具有时滞效应。
"点击查看英文标题和摘要"
Simulation and analysis of the heat transfer mechanism of arc plasma with CMT plus pulse composite heat source
An innovative numerical model was established to study the heat transfer mechanism with cold metal transfer plus pulse (CMT+P) composite heat source based on the in situ observation experiments as well as theories of electromagnetic dynamics, fluid dynamics, and thermodynamics. The distribution of temperature, potential, current density, velocity, and pressure within the arc plasma was quantitatively analyzed. The results show that the physical fields of the arc plasma with CMT+P composite heat source, such as temperature, electricity, velocity and pressure, were related not only to the input current, but also to the discharge distance between the electrodes. The closer the physical fields of the arc plasma were to the anode, the faster response rate to the current variations and the weaker time delay effect. In addition, the closer the distance between two electrodes, the more concentrated the temperature. There was a negative correlation between the distribution of potential and current density corresponding to the surface of the molten region at different moments. With the completion of the short-circuit phase, the arc plasma was reignited and converged towards the wire end under electromagnetic pinch force. The high-speed axial vortices were generated again at the wire end, which promoted the shrinkage of the liquid metal section and accelerated the splashing of free droplets. Moreover, the distribution of temperature, potential, current density, pressure, and velocity on the substrate surface had a time delay effect with the input current during the pulse phase.