当前位置: X-MOL 学术Algebra Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On self-correspondences on curves
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2023-10-03 , DOI: 10.2140/ant.2023.17.1867
Joël Bellaïche

We study the algebraic dynamics of self-correspondences on a curve. A self-correspondence on a (proper and smooth) curve C over an algebraically closed field is the data of another curve D and two nonconstant separable morphisms π1 and π2 from D to C. A subset S of C is complete if π11(S) = π21(S). We show that self-correspondences are divided into two classes: those that have only finitely many finite complete sets, and those for which C is a union of finite complete sets. The latter ones are called finitary, and happen only when deg π1 = deg π2 and have a trivial dynamics. For a nonfinitary self-correspondence in characteristic zero, we give a sharp bound for the number of étale finite complete sets.



中文翻译:

关于曲线的自对应

我们研究曲线上自对应的代数动力学。(适当且平滑的)曲线上的自对应C代数闭域上是另一条曲线的数据D和两个非常数可分离态射π1π2DC。一个子集SC完成如果_π1-1S = π2-1S。我们证明自对应分为两类:那些只有有限多个有限完整集的类,以及那些具有有限完整集的类。C是有限完全集的并集。后者称为有限的,并且仅在以下情况下发生: π1 = π2并且有微不足道的动力。对于特征零的非有限自对应,我们给出了étale有限完整集的数量的尖锐界限。

更新日期:2023-10-03
down
wechat
bug