当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
18.6% Efficiency All-Polymer Solar Cells Enabled by a Wide Bandgap Polymer Donor Based on Benzo[1,2-d:4,5-d′]bisthiazole
Advanced Materials ( IF 27.4 ) Pub Date : 2023-09-28 , DOI: 10.1002/adma.202306990 Peixi Wu 1 , Yuwei Duan 2 , Yinfeng Li 1 , Xiaopeng Xu 1 , Ruipeng Li 3 , Liyang Yu 1 , Qiang Peng 1
Advanced Materials ( IF 27.4 ) Pub Date : 2023-09-28 , DOI: 10.1002/adma.202306990 Peixi Wu 1 , Yuwei Duan 2 , Yinfeng Li 1 , Xiaopeng Xu 1 , Ruipeng Li 3 , Liyang Yu 1 , Qiang Peng 1
Affiliation
The limited selection of wide bandgap polymer donors for all-polymer solar cells (all-PSCs) is a bottleneck problem restricting their further development and remains poorly studied. Herein, a new wide bandgap polymer, namely PBBTz-Cl, is designed and synthesized by bridging the benzobisthiazole acceptor block and chlorinated benzodithiophene donor block with thiophene units for application as an electron donor in all-PSCs. PBBTz-Cl not only possesses wide bandgap and deep energy levels but also displays strong absorption, high-planar structure, and good crystallinity, making it a promising candidate for application as a polymer donor in organic solar cells. When paired with the narrow bandgap polymer acceptor PY-IT, a fibril-like morphology forms, which facilitates exciton dissociation and charge transport, contributing to a power conversion efficiency (PCE) of 17.15% of the corresponding all-PSCs. Moreover, when introducing another crystalline polymer acceptor BTP-2T2F into the PBBTz-Cl:PY-IT host blend, the absorption ditch in the range of 600–750 nm is filled, and the blend morphology is further optimized with the trap density reducing. As a result, the ternary blend all-PSCs achieve a significantly improved PCE of 18.60%, which is among the highest values for all-PSCs to date.
中文翻译:
基于苯并[1,2-d:4,5-d']双噻唑的宽带隙聚合物供体实现18.6%效率的全聚合物太阳能电池
全聚合物太阳能电池(全PSC)宽带隙聚合物供体的选择有限是限制其进一步发展的瓶颈问题,并且仍然缺乏研究。在此,通过用噻吩单元桥接苯并双噻唑受体嵌段和氯化苯并二噻吩供体嵌段,设计并合成了一种新的宽带隙聚合物,即PBBTz-Cl,用作全PSC中的电子供体。 PBBTz-Cl不仅具有宽禁带和深能级,而且具有强吸收、高平面结构和良好的结晶度,使其成为有机太阳能电池中聚合物供体的有希望的候选者。当与窄带隙聚合物受体 PY-IT 配对时,会形成原纤维状形态,促进激子解离和电荷传输,从而使功率转换效率 (PCE) 达到相应全 PSC 的 17.15%。此外,当将另一种结晶聚合物受体BTP-2T2F引入PBBTz-Cl:PY-IT主体共混物时,600-750 nm范围内的吸收沟被填充,并且随着陷阱密度的降低,共混物形态进一步优化。结果,三元共混全 PSC 的 PCE 显着提高了 18.60%,这是迄今为止全 PSC 的最高值之一。
更新日期:2023-09-28
中文翻译:
基于苯并[1,2-d:4,5-d']双噻唑的宽带隙聚合物供体实现18.6%效率的全聚合物太阳能电池
全聚合物太阳能电池(全PSC)宽带隙聚合物供体的选择有限是限制其进一步发展的瓶颈问题,并且仍然缺乏研究。在此,通过用噻吩单元桥接苯并双噻唑受体嵌段和氯化苯并二噻吩供体嵌段,设计并合成了一种新的宽带隙聚合物,即PBBTz-Cl,用作全PSC中的电子供体。 PBBTz-Cl不仅具有宽禁带和深能级,而且具有强吸收、高平面结构和良好的结晶度,使其成为有机太阳能电池中聚合物供体的有希望的候选者。当与窄带隙聚合物受体 PY-IT 配对时,会形成原纤维状形态,促进激子解离和电荷传输,从而使功率转换效率 (PCE) 达到相应全 PSC 的 17.15%。此外,当将另一种结晶聚合物受体BTP-2T2F引入PBBTz-Cl:PY-IT主体共混物时,600-750 nm范围内的吸收沟被填充,并且随着陷阱密度的降低,共混物形态进一步优化。结果,三元共混全 PSC 的 PCE 显着提高了 18.60%,这是迄今为止全 PSC 的最高值之一。