当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ternary heterostructure Cu-ZnIn2S4/WO3/WS2 flower-like microspheres for highly-efficient photocatalytic hydrogen evolution under visible-light irradiation
Applied Surface Science ( IF 6.3 ) Pub Date : 2023-09-27 , DOI: 10.1016/j.apsusc.2023.158572
Fengjiao Liu , Danni Zeng , Yaxi Tian , Yadong Hu , Tingzhe Shen , Yan Gao , Rongfeng Guan
Applied Surface Science ( IF 6.3 ) Pub Date : 2023-09-27 , DOI: 10.1016/j.apsusc.2023.158572
Fengjiao Liu , Danni Zeng , Yaxi Tian , Yadong Hu , Tingzhe Shen , Yan Gao , Rongfeng Guan
![]() |
Developing a new composite photocatalyst is the key to achieving efficient photocatalytic decomposition of aquatic hydrogen. In this study, Cu-ZnIn2 S4 /WO3 /WS2 nanostructures were prepared by a two-step hydrothermal method. The unique charge transfer mechanism of Cu-doped and mixed heterojunctions (Z-scheme heterojunctions and Type-I heterojunctions) significantly enhances charge transfer and separation, resulting in excellent photocatalytic hydrogen evolution performance of Cu-ZnIn2 S4 /WO3 /WS2 . The hydrogen evolution rate of Cu-ZnIn2 S4 /WO3 /WS2 is 93032.29 µmol·g−1 ·h−1 , 37.82 and 3.33 times that of ZnIn2 S4 and Cu-ZnIn2 S4 , respectively, and the quantum efficiency at 430nm is 37.04 %. It is also superior to Pt-modified Cu-ZnIn2 S4 (71654.39 µmol·g−1 ·h−1 ) and most reported ZnIn2 S4 -based photocatalysts. In addition, the density functional theory (DFT) calculation results further show that the absolute value of ΔGH* of the composite photocatalyst is significantly reduced to 0.08 eV, and the adsorption–desorption potential barrier is reduced considerably, indicating that the Cu-ZnIn2 S4 /WO3 /WS2 photocatalytic system is more favorable to H* adsorption. This excellent performance is attributed to the unique transfer mechanism of Cu doping and mixed heterojunctions. This study provides a new idea for photocatalytic hydrogen production and can provide a valuable reference for future research on photocatalytic hydrogen production technology.
中文翻译:
三元异质结构Cu-ZnIn2S4/WO3/WS2花状微球在可见光照射下实现高效光催化析氢
开发新型复合光催化剂是实现水生氢高效光催化分解的关键。本研究采用两步水热法制备了 Cu-ZnIn2S4/WO3/WS2 纳米结构。Cu 掺杂和混合异质结(Z 型异质结和 I 型异质结)独特的电荷转移机制显着增强了电荷转移和分离,从而使 Cu-ZnIn2S4/WO3/WS2 具有优异的光催化析氢性能。Cu-ZnIn2S4/WO3/WS2 的析氢速率为 93032.29 μmol·g−1·h−1,分别是 ZnIn2S4 和 Cu-ZnIn2S4 的 37.82 倍和 3.33 倍,430nm 处的量子效率为 37.04 %。它也优于 Pt 修饰的 Cu-ZnIn2S4 (71654.39 μmol·g-1·h-1) 和大多数报道的基于 ZnIn2S4 的光催化剂。此外,密度泛函理论 (DFT) 计算结果进一步表明,复合光催化剂的 ΔGH* 绝对值显著降低至 0.08 eV,吸附-脱附势垒显著降低,表明 Cu-ZnIn2S4/WO3/WS2 光催化体系更有利于 H* 吸附。这种优异的性能归功于 Cu 掺杂和混合异质结的独特转移机制。本研究为光催化制氢提供了新思路,可为未来光催化制氢技术的研究提供有价值的参考。
更新日期:2023-09-27
中文翻译:

三元异质结构Cu-ZnIn2S4/WO3/WS2花状微球在可见光照射下实现高效光催化析氢
开发新型复合光催化剂是实现水生氢高效光催化分解的关键。本研究采用两步水热法制备了 Cu-ZnIn2S4/WO3/WS2 纳米结构。Cu 掺杂和混合异质结(Z 型异质结和 I 型异质结)独特的电荷转移机制显着增强了电荷转移和分离,从而使 Cu-ZnIn2S4/WO3/WS2 具有优异的光催化析氢性能。Cu-ZnIn2S4/WO3/WS2 的析氢速率为 93032.29 μmol·g−1·h−1,分别是 ZnIn2S4 和 Cu-ZnIn2S4 的 37.82 倍和 3.33 倍,430nm 处的量子效率为 37.04 %。它也优于 Pt 修饰的 Cu-ZnIn2S4 (71654.39 μmol·g-1·h-1) 和大多数报道的基于 ZnIn2S4 的光催化剂。此外,密度泛函理论 (DFT) 计算结果进一步表明,复合光催化剂的 ΔGH* 绝对值显著降低至 0.08 eV,吸附-脱附势垒显著降低,表明 Cu-ZnIn2S4/WO3/WS2 光催化体系更有利于 H* 吸附。这种优异的性能归功于 Cu 掺杂和混合异质结的独特转移机制。本研究为光催化制氢提供了新思路,可为未来光催化制氢技术的研究提供有价值的参考。