当前位置:
X-MOL 学术
›
Propellants Explos. Pyrotech.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Effects of encapsulation of manganin gauges on the pressure profiles from shock initiation experiments
Propellants, Explosives, Pyrotechnics ( IF 1.7 ) Pub Date : 2023-09-22 , DOI: 10.1002/prep.202300118 Feichao Miao 1, 2 , Tao Jiang 3 , Dandan Li 1 , Xiangrong Zhang 2 , Lin Zhou 2
Propellants, Explosives, Pyrotechnics ( IF 1.7 ) Pub Date : 2023-09-22 , DOI: 10.1002/prep.202300118 Feichao Miao 1, 2 , Tao Jiang 3 , Dandan Li 1 , Xiangrong Zhang 2 , Lin Zhou 2
Affiliation
The Lagrangian test can measure the shock initiation process of explosives for different incident shock pressures. The manganin gauges record pressure histories for several DNAN-based melt-cast explosives. The encapsulation of the gauges results in three types of characteristic signals: (1) a step signal on the low-pressure shock front, (2) a flatten Von Neuman's (VN's) spike on the high-pressure shock front, and (3) a V-shape signal behind the shock front. To reveal the mechanism underlying these characteristic signals, a one-dimensional Lagrangian hydrocode, was used to simulate the propagation of a sustained shock in both ideal and non-ideal systems. The simulation results show that the impedance mismatch between encapsulation material and explosives is the main reason for the three characteristic signals. The calibration of shock initiation model should take the encapsulation material into account so as to determine shock initiation model parameters accurately.
中文翻译:
锰铜压力计封装对冲击引发实验压力分布的影响
拉格朗日试验可以测量不同事件冲击压力下炸药的冲击起爆过程。锰铜压力表记录了几种基于 DNAN 的熔铸炸药的压力历史。仪表的封装会产生三种类型的特征信号:(1) 低压冲击前沿上的阶跃信号,(2) 高压冲击前沿上的扁平冯诺依曼 (VN) 尖峰,以及 (3)冲击锋后面的 V 形信号。为了揭示这些特征信号背后的机制,使用一维拉格朗日水电编码来模拟理想和非理想系统中持续冲击的传播。仿真结果表明,包封材料与炸药之间的阻抗不匹配是产生这三个特征信号的主要原因。
更新日期:2023-09-22
中文翻译:
锰铜压力计封装对冲击引发实验压力分布的影响
拉格朗日试验可以测量不同事件冲击压力下炸药的冲击起爆过程。锰铜压力表记录了几种基于 DNAN 的熔铸炸药的压力历史。仪表的封装会产生三种类型的特征信号:(1) 低压冲击前沿上的阶跃信号,(2) 高压冲击前沿上的扁平冯诺依曼 (VN) 尖峰,以及 (3)冲击锋后面的 V 形信号。为了揭示这些特征信号背后的机制,使用一维拉格朗日水电编码来模拟理想和非理想系统中持续冲击的传播。仿真结果表明,包封材料与炸药之间的阻抗不匹配是产生这三个特征信号的主要原因。