当前位置:
X-MOL 学术
›
Annu. Rev. Fluid Mech.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Vortices and Forces in Biological Flight: Insects, Birds, and Bats
Annual Review of Fluid Mechanics ( IF 25.4 ) Pub Date : 2023-09-22 , DOI: 10.1146/annurev-fluid-120821-032304 Hao Liu 1 , Shizhao Wang 2 , Tianshu Liu 3
Annual Review of Fluid Mechanics ( IF 25.4 ) Pub Date : 2023-09-22 , DOI: 10.1146/annurev-fluid-120821-032304 Hao Liu 1 , Shizhao Wang 2 , Tianshu Liu 3
Affiliation
Insects, birds, and bats that power and control flight by flapping their wings perform excellent flight stability and maneuverability by rapidly and continuously varying their wing motions. This article provides an overview of the state of the art of vortex-dominated, unsteady flapping aerodynamics from the viewpoint of diversity and uniformity associated with dominant vortices, particularly of the relevant physical aspects of the flight of insects and vertebrates in the low- and intermediate-Reynolds-number ( Re) regime of 100 to 106 . After briefly describing wing morphology and kinematics, we discuss the main vortices generated by flapping wings and the aerodynamic forces associated with these structures, focusing on leading-edge vortices (LEVs), wake vortices, and vortices generated by wing motions over a broad Re range. The LEVs are intensified by dynamic wing morphing in bird and bat flight, producing a significantly elevated vortex lift. The complex wake vortices are the footprints of lift generation; thus, the time-averaged vortex lift can be estimated from wake velocity data. Computational fluid dynamics modeling, quasi-steady models, and vortex lift models are useful tools to elucidate the intrinsic relationships between the lift and the dominant vortices in the near- and far-fields in flapping flight.
中文翻译:
生物飞行中的漩涡和力:昆虫、鸟类和蝙蝠
通过拍打翅膀来为飞行提供动力和控制飞行的昆虫、鸟类和蝙蝠通过快速连续地改变它们的翅膀运动来提供出色的飞行稳定性和机动性。本文从与主导涡流相关的多样性和均匀性的角度概述了涡旋主导、非稳态扑翼空气动力学的最新技术,特别是昆虫和脊椎动物在 100 到 106 的低雷诺数 (Re) 范围内飞行的相关物理方面。在简要描述了机翼形态和运动学之后,我们讨论了拍打机翼产生的主要涡流以及与这些结构相关的空气动力,重点介绍了前缘涡流 (LEV)、尾流涡流和机翼运动在宽 Re 范围内产生的涡流。在鸟类和蝙蝠飞行中,动态机翼变形会增强 LEV,从而产生显着升高的涡流升力。复杂的尾流涡流是升力产生的足迹;因此,时间平均涡旋升力可以根据尾流速度数据进行估计。计算流体动力学建模、准稳态模型和涡旋升力模型是阐明拍打飞行中升力与近场和远场中主要涡旋之间内在关系的有用工具。
更新日期:2023-09-22
中文翻译:
生物飞行中的漩涡和力:昆虫、鸟类和蝙蝠
通过拍打翅膀来为飞行提供动力和控制飞行的昆虫、鸟类和蝙蝠通过快速连续地改变它们的翅膀运动来提供出色的飞行稳定性和机动性。本文从与主导涡流相关的多样性和均匀性的角度概述了涡旋主导、非稳态扑翼空气动力学的最新技术,特别是昆虫和脊椎动物在 100 到 106 的低雷诺数 (Re) 范围内飞行的相关物理方面。在简要描述了机翼形态和运动学之后,我们讨论了拍打机翼产生的主要涡流以及与这些结构相关的空气动力,重点介绍了前缘涡流 (LEV)、尾流涡流和机翼运动在宽 Re 范围内产生的涡流。在鸟类和蝙蝠飞行中,动态机翼变形会增强 LEV,从而产生显着升高的涡流升力。复杂的尾流涡流是升力产生的足迹;因此,时间平均涡旋升力可以根据尾流速度数据进行估计。计算流体动力学建模、准稳态模型和涡旋升力模型是阐明拍打飞行中升力与近场和远场中主要涡旋之间内在关系的有用工具。