当前位置: X-MOL 学术Prog. Aerosp. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts
Progress in Aerospace Sciences ( IF 11.5 ) Pub Date : 2023-09-19 , DOI: 10.1016/j.paerosci.2023.100922
Eytan J. Adler , Joaquim R.R.A. Martins

Civil aviation provides an essential transportation network that connects the world and supports global economic growth. To maintain these benefits while meeting environmental goals, next-generation aircraft must have drastically reduced climate impacts. Hydrogen-powered aircraft have the potential to fly existing routes with no carbon emissions and reduce or eliminate other emissions. This paper is a comprehensive guide to hydrogen-powered aircraft that explains the fundamental physics and reviews current technologies. We discuss the impact of these technologies on aircraft design, cost, certification, and environment. In the long term, hydrogen aircraft appear to be the most compelling alternative to today’s kerosene-powered aircraft. Using hydrogen also enables novel technologies, such as fuel cells and superconducting electronics, which could lead to aircraft concepts that are not feasible with kerosene. Hydrogen-powered aircraft are technologically feasible but require significant research and development. Lightweight liquid hydrogen tanks and their integration with the airframe is one of the critical technologies. Fuel cells can eliminate in-flight emissions but must become lighter, more powerful, and more durable to make large, fuel cell-powered transport aircraft feasible. Hydrogen turbofans already have these desirable characteristics but produce some emissions, albeit much less damaging than kerosene turbofans. Beyond airframe and propulsion technologies, the viability of hydrogen aircraft hinges on low-cost green hydrogen production, which requires massive investments in the energy infrastructure.



中文翻译:

氢动力飞机:基本概念、关键技术和环境影响

民航提供了连接世界、支持全球经济增长的重要交通网络。为了在实现环境目标的同时保持这些效益,下一代飞机必须大幅减少对气候的影响。氢动力飞机有潜力在现有航线上飞行,不产生碳排放,并减少或消除其他排放。本文是氢动力飞机的综合指南,解释了基础物理并回顾了当前技术。我们讨论这些技术对飞机设计、成本、认证和环境的影响。从长远来看,氢飞机似乎是当今煤油动力飞机最引人注目的替代品。使用氢还可以实现燃料电池和超导电子等新技术,这可能会导致飞机概念无法用煤油实现。氢动力飞机在技术上是可行的,但需要大量的研究和开发。轻量化液氢罐及其与机身的集成是关键技术之一。燃料电池可以消除飞行中的排放,但必须变得更轻、更强大、更耐用,才能使大型燃料电池驱动的运输机变得可行。氢涡轮风扇已经具有这些理想的特性,但会产生一些排放,尽管其危害性比煤油涡轮风扇要小得多。除了机身和推进技术之外,氢飞机的可行性还取决于低成本的绿色氢气生产,这需要对能源基础设施进行大量投资。氢动力飞机在技术上是可行的,但需要大量的研究和开发。轻量化液氢罐及其与机身的集成是关键技术之一。燃料电池可以消除飞行中的排放,但必须变得更轻、更强大、更耐用,才能使大型燃料电池驱动的运输机变得可行。氢涡轮风扇已经具有这些理想的特性,但会产生一些排放,尽管其危害性比煤油涡轮风扇要小得多。除了机身和推进技术之外,氢飞机的可行性还取决于低成本的绿色氢气生产,这需要对能源基础设施进行大量投资。氢动力飞机在技术上是可行的,但需要大量的研究和开发。轻量化液氢罐及其与机身的集成是关键技术之一。燃料电池可以消除飞行中的排放,但必须变得更轻、更强大、更耐用,才能使大型燃料电池驱动的运输机变得可行。氢涡轮风扇已经具有这些理想的特性,但会产生一些排放,尽管其危害性比煤油涡轮风扇要小得多。除了机身和推进技术之外,氢飞机的可行性还取决于低成本的绿色氢气生产,这需要对能源基础设施进行大量投资。轻量化液氢罐及其与机身的集成是关键技术之一。燃料电池可以消除飞行中的排放,但必须变得更轻、更强大、更耐用,才能使大型燃料电池驱动的运输机变得可行。氢涡轮风扇已经具有这些理想的特性,但会产生一些排放,尽管其危害性比煤油涡轮风扇要小得多。除了机身和推进技术之外,氢飞机的可行性还取决于低成本的绿色氢气生产,这需要对能源基础设施进行大量投资。轻量化液氢罐及其与机身的集成是关键技术之一。燃料电池可以消除飞行中的排放,但必须变得更轻、更强大、更耐用,才能使大型燃料电池驱动的运输机变得可行。氢涡轮风扇已经具有这些理想的特性,但会产生一些排放,尽管其危害性比煤油涡轮风扇要小得多。除了机身和推进技术之外,氢飞机的可行性还取决于低成本的绿色氢气生产,这需要对能源基础设施进行大量投资。氢涡轮风扇已经具有这些理想的特性,但会产生一些排放,尽管其危害性比煤油涡轮风扇要小得多。除了机身和推进技术之外,氢飞机的可行性还取决于低成本的绿色氢气生产,这需要对能源基础设施进行大量投资。氢涡轮风扇已经具有这些理想的特性,但会产生一些排放,尽管其危害性比煤油涡轮风扇要小得多。除了机身和推进技术之外,氢飞机的可行性还取决于低成本的绿色氢气生产,这需要对能源基础设施进行大量投资。

更新日期:2023-09-23
down
wechat
bug