CdS 的晶体结构影响能带隙,因此影响其作为太阳能到氢能转换的半导体光催化剂的适用性。通过简单调节水热反应温度,制备出不同晶相的CdS样品,并测试其光催化产氢性能,探讨立方CdS的光催化机理。XRD结果证实了两种催化剂的制备成功。TEM结果表明,(111)和(100)晶面对应于两种催化剂的立方和六方CdS结构。立方相和六方相CdS的带隙值分别为2.24eV和2.17eV。电化学阻抗谱结果表明,立方CdS具有较小的圆弧半径和较低的电阻。根据莫特-肖特基图进一步计算了两个 CdS 相的传导电势,发现立方 CdS 的传导电势比六方 CdS 的传导电势更负。因此,立方CdS比六方CdS表现出更高的载流子迁移速率和电荷分离效率;立方CdS在可见光照射下的光催化产氢量达到680 µL,明显高于六方CdS。这项研究可以为CdS基材料在可见光驱动的析氢领域的潜在应用的开发提供指导,并为其他高性能CdS/半导体复合材料的制造铺平道路。揭示立方 CdS 的传导电势比六方 CdS 的传导电势更负。因此,立方CdS比六方CdS表现出更高的载流子迁移速率和电荷分离效率;立方CdS在可见光照射下的光催化产氢量达到680 µL,明显高于六方CdS。这项研究可以为CdS基材料在可见光驱动的析氢领域的潜在应用的开发提供指导,并为其他高性能CdS/半导体复合材料的制造铺平道路。揭示立方 CdS 的传导电势比六方 CdS 的传导电势更负。因此,立方CdS比六方CdS表现出更高的载流子迁移速率和电荷分离效率;立方CdS在可见光照射下的光催化产氢量达到680 µL,明显高于六方CdS。这项研究可以为CdS基材料在可见光驱动的析氢领域的潜在应用的开发提供指导,并为其他高性能CdS/半导体复合材料的制造铺平道路。立方CdS比六方CdS表现出更高的载流子迁移速率和电荷分离效率;立方CdS在可见光照射下的光催化产氢量达到680 µL,明显高于六方CdS。这项研究可以为CdS基材料在可见光驱动的析氢领域的潜在应用的开发提供指导,并为其他高性能CdS/半导体复合材料的制造铺平道路。立方CdS比六方CdS表现出更高的载流子迁移速率和电荷分离效率;立方CdS在可见光照射下的光催化产氢量达到680 µL,明显高于六方CdS。这项研究可以为CdS基材料在可见光驱动的析氢领域的潜在应用的开发提供指导,并为其他高性能CdS/半导体复合材料的制造铺平道路。
"点击查看英文标题和摘要"
CdS with tunable crystalline phase structures: Controllable preparation and enhanced photocatalytic properties
The crystal structure of CdS influences the energy band gap and therefore, its suitability as a semiconductor photocatalyst for solar-to-hydrogen energy conversion. By simply adjusting the temperature of the hydrothermal reaction, CdS samples with different crystal phases were prepared, and their photocatalytic hydrogen production performance was tested to investigate the photocatalytic mechanism of cubic CdS. XRD results confirmed the successful preparation of the two catalysts. TEM results revealed that the (111) and (100) crystal planes corresponded to the cubic and hexagonal CdS structures of the two catalysts. The band gap values of cubic phase and hexagonal phase CdS were 2.24 eV and 2.17 eV, respectively. Electrochemical impedance spectroscopy results showed that cubic CdS exhibits a smaller arc radius and lower resistance. The conduction potential of the two CdS phases was further calculated based on the Mott-Schottky plots, revealing that the conduction potential of cubic CdS is more negative than that of hexagonal CdS. Therefore, cubic CdS exhibited a higher carrier migration rate and charge separation efficiency than hexagonal CdS; the photocatalytic hydrogen production of cubic CdS reached 680 µL, which was considerably higher than that of hexagonal CdS under visible light irradiation. This study may serve as a guide for the development of potential applications of CdS-based materials in the field of visible-light-driven hydrogen evolution and could pave the way for the fabrication of other high-performance CdS/semiconductor composites.