当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Morph-genetic biomimetic multiscale porous hydrogels for high-efficient solar evaporation from seawater
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-09-19 , DOI: 10.1016/j.cej.2023.146177
Lin Chen , Yue Sun , Chao Ma , Ye Sun , Shuyi Peng , Xingyu Cao , Lang Yang , Chunxin Ma , Hongliang Zhao , Hao Wang , Dong Zhang , Qijie Liu , Zhenzhong Liu , Yihui Yuan , Ning Wang

Huge seawater resources are of utmost importance in addressing the increasing and severe water shortage worldwide. However, high-efficiently and sustainably extracting fresh water from seawater through solar evaporation remains a challenging task. Herein, we propose a novel approach based on the morph-genetic biomimetic concept, utilizing a cuttlebone-templated directional porous hydrogel (CTDPH). By etching away the cuttlebone (CaCO3) in the hydrogel network, we have developed a zwitterionic material that exhibits high-efficiency photo-thermal conversion, resistance to salt deposition, and super hydrophilicity, enabling high-efficiency solar evaporation. The resultant CTDPH demonstrates a high level of photo-thermal conversion efficiency, thanks to the incorporation of MXene (Ti3C2Tx) 2D nanosheets. By introducing polyzwitterions into the hydrogel matrix, the CTDPH achieves superhydrophilicity, greatly enhancing the transport of seawater. More importantly, the CTDPH possesses a penetrating oriented macro-porous structure, enabling rapid seawater transportation while effectively preventing salt crystallization. This prevents salt deposition on the surface of the hydrogel even during continuous 12-hour 1.0 sun irradiation. As a result, compared with the MXene-free gels and cuttlebone-reserved gels, this CTDPH can largely increase the seawater evaporating rate from 0.73 or 1.75 to 3.11 kg m-2h−1 under 1.0 sun irradiation. Furthermore, even after undergoing 10 cycles of seawater evaporation, the CTDPH still maintains 91.6% of its original solar evaporation rate (2.85 kg m-2h−1). The CTDPH emerges as a promising contender, offering both high efficiency and sustainability for solar evaporation from seawater, while simultaneously paving the way for innovative approaches to explore other materials and systems in the realm of solar evaporation.



中文翻译:

用于海水高效太阳能蒸发的形态发生仿生多尺度多孔水凝胶

巨大的海水资源对于解决全球日益严重的水资源短缺问题至关重要。然而,通过太阳能蒸发从海水中高效、可持续地提取淡水仍然是一项具有挑战性的任务。在此,我们提出了一种基于形态遗传仿生概念的新方法,利用乌贼骨模板定向多孔水凝胶(CTDPH)。通过蚀刻掉水凝胶网络中的乌贼骨(CaCO 3),我们开发了一种两性离子材料,该材料具有高效光热转换、抗盐沉积和超亲水性,可实现高效太阳能蒸发。由于掺入了 MXene (Ti 3 C) ,所得的 CTDPH 表现出高水平的光热转换效率2 T x ) 2D 纳米片。通过将多两性离子引入水凝胶基质中,CTDPH实现了超亲水性,大大增强了海水的传输。更重要的是,CTDPH具有穿透性的大孔结构,能够实现海水的快速输送,同时有效防止盐结晶。即使在连续 12 小时 1.0 阳光照射下,这也可以防止盐沉积在水凝胶表面。结果,与不含MXene的凝胶和保留海螵蛸的凝胶相比,该CTDPH可以将海水蒸发率从0.73或1.75大幅提高到3.11 kg m -2 h -11.0太阳光照射下。此外,即使经历了10次海水蒸发循环,CTDPH仍保持其原始太阳蒸发率(2.85 kg m -2 h -1)的91.6%。CTDPH 成为一个有前途的竞争者,它为海水太阳能蒸发提供了高效率和可持续性,同时为探索太阳能蒸发领域其他材料和系统的创新方法铺平了道路。

更新日期:2023-09-23
down
wechat
bug