当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dicopper(I) Sites Confined in a Single Metal–Organic Layer Boosting the Electroreduction of CO2 to CH4 in a Neutral Electrolyte
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-09-21 , DOI: 10.1021/jacs.3c08571
Jin-Meng Heng 1 , Hao-Lin Zhu 1 , Zhen-Hua Zhao 1 , Can Yu 2 , Pei-Qin Liao 1 , Xiao-Ming Chen 1
Affiliation  

It is challenging and important to achieve high performance for an electrochemical CO2 reduction reaction (eCO2RR) to yield CH4 under neutral conditions. So far, most of the reported active sites for eCO2RR to yield CH4 are single metal sites; the performances are far below the commercial requirements. Herein, we reported a nanosheet metal–organic layer in single-layer, namely, [Cu2(obpy)2] (Cuobpy-SL, Hobpy = 1H-[2,2′]bipyridinyl-6-one), possessing dicopper(I) sites for eCO2RR to yield CH4 in a neutral aqueous solution. Detailed examination of Cuobpy-SL revealed high performance for CH4 production with a faradic efficiency of 82(1)% and a current density of ∼90 mA cm–2 at −1.4 V vs. reversible hydrogen electrode (RHE). No obvious degradation was observed over 100 h of continuous operation, representing a remarkable performance to date. Mechanism studies showed that compared with the conventional single-copper sites and completely exposed dicopper(I) sites, the dicopper(I) sites in the confined space formed by the molecular stacking have a strong affinity to key C1 intermediates such as *CO, *CHO, and *CH2O to facilitate the CH4 production, yet inhibiting C–C coupling.

中文翻译:

限制在单个金属有机层中的二铜 (I) 位点促进中性电解质中 CO2 电还原为 CH4

在中性条件下实现电化学CO 2还原反应(eCO 2 RR)产生CH 4的高性能是具有挑战性且重要的。到目前为止,大多数报道的eCO 2 RR产生CH 4的活性位点都是单金属位点;性能远低于商业要求。在此,我们报道了单层纳米片金属有机层,即[Cu 2 (obpy) 2 ] ( Cuobpy-SL , Hobpy = 1 H -[2,2′]bipyridinyl-6-one),具有二铜(I)eCO 2 RR在中性水溶液中产生CH 4 的位点。Cuobpy-SL的详细检查揭示了 CH 4生产的高性能,法拉第效率为 82(1)%,在 -1.4 V vs时电流密度为 ∼90 mA cm –2。可逆氢电极(RHE)。连续运行 100 小时没有观察到明显的性能下降,表现出迄今为止的卓越性能。机理研究表明,与传统的单铜位点和完全暴露的二铜(I)位点相比,分子堆积形成的有限空间中的二铜(I)位点对关键C 1 中间体如* CO、 *CHO 和 *CH 2 O 促进 CH 4产生,同时抑制 C-C 偶联。
更新日期:2023-09-21
down
wechat
bug