当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Combining Renewable Electricity and Renewable Carbon: Understanding Reaction Mechanisms of Biomass-Derived Furanic Compounds for Design of Catalytic Nanomaterials
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2023-09-17 , DOI: 10.1021/acs.accounts.3c00368
Nathanael C Ramos 1, 2 , Marc Manyé Ibáñez 1, 2 , Rupali Mittal 1, 2 , Michael J Janik 3 , Adam Holewinski 1, 2
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2023-09-17 , DOI: 10.1021/acs.accounts.3c00368
Nathanael C Ramos 1, 2 , Marc Manyé Ibáñez 1, 2 , Rupali Mittal 1, 2 , Michael J Janik 3 , Adam Holewinski 1, 2
Affiliation
![]() |
Despite the growing deployment of renewable energy conversion technologies, a number of large industrial sectors remain challenging to decarbonize. Aviation, heavy transport, and the production of steel, cement, and chemicals are heavily dependent on carbon-containing fuels and feedstocks. A hopeful avenue toward carbon neutrality is the implementation of renewable carbon for the synthesis of critical fuels, chemicals, and materials. Biomass provides an opportune source of renewable carbon, naturally capturing atmospheric CO2 and forming multicarbon linkages and useful chemical functional groups. The constituent molecules nonetheless require various chemical transformations, often best facilitated by catalytic nanomaterials, in order to access usable final products.
中文翻译:
结合可再生电力和可再生碳:了解生物质衍生呋喃化合物的反应机制,用于催化纳米材料的设计
尽管可再生能源转换技术的部署不断增加,但许多大型工业部门仍然面临脱碳挑战。航空、重型运输以及钢铁、水泥和化学品的生产严重依赖含碳燃料和原料。实现碳中和的一条充满希望的途径是采用可再生碳来合成关键燃料、化学品和材料。生物质提供了可再生碳的合适来源,自然捕获大气中的CO 2并形成多碳键和有用的化学官能团。然而,组成分子需要各种化学转化,通常最好通过催化纳米材料来促进,以获得可用的最终产品。
更新日期:2023-09-17
中文翻译:

结合可再生电力和可再生碳:了解生物质衍生呋喃化合物的反应机制,用于催化纳米材料的设计
尽管可再生能源转换技术的部署不断增加,但许多大型工业部门仍然面临脱碳挑战。航空、重型运输以及钢铁、水泥和化学品的生产严重依赖含碳燃料和原料。实现碳中和的一条充满希望的途径是采用可再生碳来合成关键燃料、化学品和材料。生物质提供了可再生碳的合适来源,自然捕获大气中的CO 2并形成多碳键和有用的化学官能团。然而,组成分子需要各种化学转化,通常最好通过催化纳米材料来促进,以获得可用的最终产品。