当前位置:
X-MOL 学术
›
Bioact. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mechanisms underlying the cell-matrixed nerve grafts repairing peripheral nerve defects
Bioactive Materials ( IF 18.0 ) Pub Date : 2023-09-17 , DOI: 10.1016/j.bioactmat.2023.09.002
Shanshan Wang 1, 2 , Hongkui Wang 1 , Panjian Lu 1 , Leilei Gong 1 , Xiaosong Gu 1 , Meiyuan Li 1
Bioactive Materials ( IF 18.0 ) Pub Date : 2023-09-17 , DOI: 10.1016/j.bioactmat.2023.09.002
Shanshan Wang 1, 2 , Hongkui Wang 1 , Panjian Lu 1 , Leilei Gong 1 , Xiaosong Gu 1 , Meiyuan Li 1
Affiliation
![]() |
Decellularized extracellular matrix (dECM), with its distinct biological properties, has gained significant attention as a natural biomaterial. Leveraging its potentials, we successfully developed a three-dimensional matrix-based oriented nerve graft by encapsulating a fibrous scaffold with multilayered conformationally intact and biologically active human bone marrow mesenchymal stem cell-derived decellularized extracellular matrix (hBMSC-dECM). Convincingly, the hBMSC-dECM group exhibited comparable functional recoveries to the autograft group by postoperative week 12. In the comprehensive analysis, the molecular regulations in the hBMSC-dECM group were more intricate and nuanced compared to the autograft group. Nevertheless, both groups displayed similar molecular regulatory processes in terms of vascularization and extracellular matrix. Notably, the hBMSC-dECM group demonstrated sustained high levels of regulation in axon and myelin regeneration at week 12, while the immunomodulation returned to the normal levels after peaking at week 2. Collectively, our findings illustrated the satisfactory construction of a cell-matrixed nerve graft that established a microenvironment conducive to nerve regeneration, and elucidated the distinct molecular regulation patterns and characteristics associated with different repair modes.
中文翻译:
细胞基质神经移植修复周围神经缺损的机制
脱细胞细胞外基质(dECM)以其独特的生物学特性,作为一种天然生物材料受到了广泛的关注。利用其潜力,我们通过封装具有多层构象完整且具有生物活性的人骨髓间充质干细胞衍生的脱细胞细胞外基质(hBMSC-dECM)的纤维支架,成功开发了一种基于三维基质的定向神经移植物。令人信服的是,到术后第12周,hBMSC-dECM组的功能恢复与自体移植组相当。综合分析,hBMSC-dECM组的分子调控比自体移植组更加复杂和细致。然而,两组在血管化和细胞外基质方面表现出相似的分子调节过程。值得注意的是,hBMSC-dECM 组在第 12 周表现出对轴突和髓磷脂再生的持续高水平调节,而免疫调节在第 2 周达到峰值后恢复到正常水平。总的来说,我们的研究结果表明细胞基质神经的构建令人满意移植物建立了有利于神经再生的微环境,并阐明了与不同修复模式相关的独特分子调节模式和特征。
更新日期:2023-09-17
中文翻译:

细胞基质神经移植修复周围神经缺损的机制
脱细胞细胞外基质(dECM)以其独特的生物学特性,作为一种天然生物材料受到了广泛的关注。利用其潜力,我们通过封装具有多层构象完整且具有生物活性的人骨髓间充质干细胞衍生的脱细胞细胞外基质(hBMSC-dECM)的纤维支架,成功开发了一种基于三维基质的定向神经移植物。令人信服的是,到术后第12周,hBMSC-dECM组的功能恢复与自体移植组相当。综合分析,hBMSC-dECM组的分子调控比自体移植组更加复杂和细致。然而,两组在血管化和细胞外基质方面表现出相似的分子调节过程。值得注意的是,hBMSC-dECM 组在第 12 周表现出对轴突和髓磷脂再生的持续高水平调节,而免疫调节在第 2 周达到峰值后恢复到正常水平。总的来说,我们的研究结果表明细胞基质神经的构建令人满意移植物建立了有利于神经再生的微环境,并阐明了与不同修复模式相关的独特分子调节模式和特征。