当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unravelling Twin Topotactic/Nontopotactic Reactive TiSe2 Cathodes for Aqueous Batteries
Advanced Materials ( IF 27.4 ) Pub Date : 2023-09-18 , DOI: 10.1002/adma.202306810 Qi Lei 1 , Junwei Yang 2 , Jingying Si 1 , Yuanxin Zhao 1 , Zhiguo Ren 1 , Wei Zhang 1 , Haitao Li 1 , ZeZhou Wu 1 , Yuanhe Sun 1 , Jige Chen 1 , Wen Wen 1 , Yong Wang 1 , Yi Gao 1, 3 , Xiaolong Li 1, 3 , Renzhong Tai 1, 3 , Daming Zhu 1, 3
Advanced Materials ( IF 27.4 ) Pub Date : 2023-09-18 , DOI: 10.1002/adma.202306810 Qi Lei 1 , Junwei Yang 2 , Jingying Si 1 , Yuanxin Zhao 1 , Zhiguo Ren 1 , Wei Zhang 1 , Haitao Li 1 , ZeZhou Wu 1 , Yuanhe Sun 1 , Jige Chen 1 , Wen Wen 1 , Yong Wang 1 , Yi Gao 1, 3 , Xiaolong Li 1, 3 , Renzhong Tai 1, 3 , Daming Zhu 1, 3
Affiliation
Titanium selenide (TiSe2), a model transition metal chalcogenide material, typically relies on topotactic ion intercalation/deintercalation to achieve stable ion storage with minimal disruption of the transport pathways but has restricted capacity (<130 mAh g−1). Developing novel energy storage mechanisms beyond conventional intercalation to break capacity limits in TiSe2 cathodes is essential yet challenging. Herein, the ion storage properties of TiSe2 are revisited and an unusual thermodynamically stable twin topotactic/nontopotactic Cu2+ accommodation mechanism for aqueous batteries is unraveled. In situ synchrotron X-ray diffraction and ex situ microscopy jointly demonstrated that topotactic intercalation sustained the ion transport framework, nontopotactic conversion involved localized multielectron reactions, and these two parallel reactions are miraculously intertwined in nanoscale space. Comprehensive experimental and theoretical results suggested that the twin-reaction mechanism significantly improved the electron transfer ability, and the reserved intercalated TiSe2 structure anchored the reduced titanium monomers with high affinity and promoted efficient charge transfer to synergistically enhance the capacity and reversibility. Consequently, TiSe2 nanoflake cathodes delivered a never-before-achieved capacity of 275.9 mAh g−1 at 0.1 A g−1, 93.5% capacity retention over 1000 cycles, and endow hybrid batteries (TiSe2-Cu||Zn) with a stable energy supply of 181.34 Wh kg−1 at 2339.81 W kg−1, offering a promising model for aqueous ion storage.
中文翻译:
解开水系电池的拓扑/非拓扑双反应 TiSe2 阴极
硒化钛(TiSe 2 )是一种模型过渡金属硫族化物材料,通常依靠拓扑离子嵌入/脱嵌来实现稳定的离子存储,同时对传输路径的破坏最小,但容量有限(<130 id=75>-1)。开发超越传统插层的新型储能机制以突破 TiSe 2阴极的容量限制至关重要,但也具有挑战性。在此,重新审视了TiSe 2的离子存储特性,并揭示了水性电池中不寻常的热力学稳定的双拓扑/非拓扑Cu 2+调节机制。原位同步加速器X射线衍射和异位显微镜共同证明拓扑定向插层维持了离子传输框架,非拓扑转化涉及局域多电子反应,这两个平行反应在纳米尺度空间中奇迹般地交织在一起。综合实验和理论结果表明,双反应机制显着提高了电子转移能力,并且保留的插层TiSe 2结构以高亲和力锚定还原的钛单体,促进有效的电荷转移,从而协同增强容量和可逆性。因此,TiSe 2纳米片正极在0.1 A g -1下实现了前所未有的275.9 mAh g -1容量,1000次循环后容量保持率为93.5%,并赋予混合电池(TiSe 2 -Cu||Zn)在2339.81 W kg -1下稳定提供181.34 Wh kg -1的能量,为水离子存储提供了一个有前景的模型。
更新日期:2023-09-18
中文翻译:
解开水系电池的拓扑/非拓扑双反应 TiSe2 阴极
硒化钛(TiSe 2 )是一种模型过渡金属硫族化物材料,通常依靠拓扑离子嵌入/脱嵌来实现稳定的离子存储,同时对传输路径的破坏最小,但容量有限(<130 id=75>-1)。开发超越传统插层的新型储能机制以突破 TiSe 2阴极的容量限制至关重要,但也具有挑战性。在此,重新审视了TiSe 2的离子存储特性,并揭示了水性电池中不寻常的热力学稳定的双拓扑/非拓扑Cu 2+调节机制。原位同步加速器X射线衍射和异位显微镜共同证明拓扑定向插层维持了离子传输框架,非拓扑转化涉及局域多电子反应,这两个平行反应在纳米尺度空间中奇迹般地交织在一起。综合实验和理论结果表明,双反应机制显着提高了电子转移能力,并且保留的插层TiSe 2结构以高亲和力锚定还原的钛单体,促进有效的电荷转移,从而协同增强容量和可逆性。因此,TiSe 2纳米片正极在0.1 A g -1下实现了前所未有的275.9 mAh g -1容量,1000次循环后容量保持率为93.5%,并赋予混合电池(TiSe 2 -Cu||Zn)在2339.81 W kg -1下稳定提供181.34 Wh kg -1的能量,为水离子存储提供了一个有前景的模型。