当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Density Functional Theory Study of P-Doped Co3O4(111) Facets for HCHO Adsorption: Implications for Metal Oxide Semiconductor Gas Sensors
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2023-09-14 , DOI: 10.1021/acsanm.3c02656 Songlin Li 1 , Min Zhang 1 , Youqiang Dong 1 , Jie Gao 2 , Pengfei Cheng 1 , Hai Wang 1
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2023-09-14 , DOI: 10.1021/acsanm.3c02656 Songlin Li 1 , Min Zhang 1 , Youqiang Dong 1 , Jie Gao 2 , Pengfei Cheng 1 , Hai Wang 1
Affiliation
Volatile organic compounds (VOCs) pose a significant threat to human health, and it is essential to develop advanced VOC gas sensors by understanding the mechanisms. Metal oxide semiconductor gas sensors have the advantages of high sensitivity, high-temperature resistance, stability, and safety. The rational design of crystal facets and doping components can improve the sensing properties. However, the time-consuming experimental optimization of the sensor design has tremendously inhibited the development of the new sensing material. Nevertheless, density functional theory (DFT) calculations shined a light on the fundamental understanding of the sensing mechanism at the molecular level and accelerated the sensor design process. In this study, we used DFT calculations to investigate the sensing properties of the P-doped Co3O4(111) surface toward methanol, methane, formic acid, water, and formaldehyde. Results showed that P doping changed the surface electronic distribution, increased the charge transfer of HCHO, and enhanced the adsorption energy of other molecules. The significant difference in adsorption energy between H2O and HCHO indicates that the P-doped surface exhibits certain antihumidity properties in HCHO sensing. Our work broadens the application of P-doped Co3O4(111) in the VOC gas-sensing field and provides a theoretical basis for designing metal oxide semiconductor gas sensors.
中文翻译:
P 掺杂 Co3O4(111) 面用于 HCHO 吸附的密度泛函理论研究:对金属氧化物半导体气体传感器的启示
挥发性有机化合物 (VOC) 对人类健康构成重大威胁,通过了解其机制来开发先进的 VOC 气体传感器至关重要。金属氧化物半导体气体传感器具有灵敏度高、耐高温、稳定、安全等优点。晶面和掺杂成分的合理设计可以提高传感性能。然而,传感器设计耗时的实验优化极大地抑制了新型传感材料的发展。尽管如此,密度泛函理论(DFT)计算揭示了对分子水平传感机制的基本理解,并加速了传感器的设计过程。在本研究中,我们使用DFT计算来研究P掺杂Co 3 O 4 (111)表面对甲醇、甲烷、甲酸、水和甲醛的传感特性。结果表明,P掺杂改变了表面电子分布,增加了HCHO的电荷转移,增强了其他分子的吸附能。H 2 O和HCHO之间吸附能的显着差异表明P掺杂表面在HCHO传感中表现出一定的抗湿性能。我们的工作拓宽了P掺杂Co 3 O 4 (111)在VOC气体传感领域的应用,并为金属氧化物半导体气体传感器的设计提供了理论基础。
更新日期:2023-09-14
中文翻译:
P 掺杂 Co3O4(111) 面用于 HCHO 吸附的密度泛函理论研究:对金属氧化物半导体气体传感器的启示
挥发性有机化合物 (VOC) 对人类健康构成重大威胁,通过了解其机制来开发先进的 VOC 气体传感器至关重要。金属氧化物半导体气体传感器具有灵敏度高、耐高温、稳定、安全等优点。晶面和掺杂成分的合理设计可以提高传感性能。然而,传感器设计耗时的实验优化极大地抑制了新型传感材料的发展。尽管如此,密度泛函理论(DFT)计算揭示了对分子水平传感机制的基本理解,并加速了传感器的设计过程。在本研究中,我们使用DFT计算来研究P掺杂Co 3 O 4 (111)表面对甲醇、甲烷、甲酸、水和甲醛的传感特性。结果表明,P掺杂改变了表面电子分布,增加了HCHO的电荷转移,增强了其他分子的吸附能。H 2 O和HCHO之间吸附能的显着差异表明P掺杂表面在HCHO传感中表现出一定的抗湿性能。我们的工作拓宽了P掺杂Co 3 O 4 (111)在VOC气体传感领域的应用,并为金属氧化物半导体气体传感器的设计提供了理论基础。