当前位置: X-MOL 学术Adv. Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assembly of Photochromic Molecules into Multiple Stimuli-Responsive Hollow Microparticles via Templating Coordination
Advanced Optical Materials ( IF 8.0 ) Pub Date : 2023-09-10 , DOI: 10.1002/adom.202301483
Chenxi Peng 1 , Weizhen Lv 1 , Xue Chen 1 , Yung Doug Suh 2 , Xiaowang Liu 1
Affiliation  

Supramolecular multifunctional metal–organic networks offer immense potential in drug delivery, bioimaging, catalysis, and therapeutics. However, the creation of multiple stimuli-responsive fluorescent hollow nano/microparticles is a formidable challenge in this field. In this study, a novel strategy is reported for synthesizing photochromic hollow microparticles that exhibit responsiveness to light, pH, and glutathione (GSH). With the assistance of templating coordination from zeolitic imidazolate framework-8 microparticles, bisphosphonate-merocyanine ligands are successfully assembled to create hollow bisphosphonate-spiropyran (BPSP)-Zn2+ microparticles. The photochromic and pH responses stem from the reversible conversion between spiropyran and zwitterionic merocyanine components and between merocyanine and protonated merocyanine, respectively. The GSH response is attributed to the stronger affinity of Zn2+ to thiol groups than to phosphonate groups. These remarkable features render the hollow BPSP-Zn2+ microparticles highly suitable for applications in stimulus-triggered drug delivery, and these findings provide a platform for developing innovative materials that have the potential to transform the biomedical field.

中文翻译:

通过模板协调将光致变色分子组装成多个刺激响应空心微粒

超分子多功能金属有机网络在药物输送、生物成像、催化和治疗方面具有巨大的潜力。然而,多种刺激响应荧光中空纳米/微粒的创建是该领域的一个艰巨的挑战。在这项研究中,报道了一种合成光致变色空心微粒的新策略,该微粒对光、pH 值和谷胱甘肽 (GSH) 表现出响应性。在沸石咪唑骨架8微粒的模板配位的帮助下,成功组装双膦酸酯-部花青配体,形成中空双膦酸酯-螺吡喃(BPSP)-Zn 2+微粒子。光致变色和pH响应分别源于螺吡喃和两性离子部花青组分之间以及部花青和质子化部花青之间的可逆转化。GSH 反应归因于 Zn 2+对硫醇基团的亲和力比对膦酸基团的亲和力更强。这些显着的特征使得中空 BPSP-Zn 2+微粒非常适合刺激触发的药物输送应用,这些发现为开发有潜力改变生物医学领域的创新材料提供了一个平台。
更新日期:2023-09-10
down
wechat
bug