Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nanohole-Array Induced Metallic Molybdenum Selenide Nanozyme for Photoenhanced Tumor-Specific Therapy
ACS Nano ( IF 15.8 ) Pub Date : 2023-09-15 , DOI: 10.1021/acsnano.3c05000 Liang Chen 1 , Caiping Ding 1 , Kejie Chai 1 , Bing Yang 1 , Weiwei Chen 1 , Junyi Zeng 1 , Weiming Xu 1 , Youju Huang 1
ACS Nano ( IF 15.8 ) Pub Date : 2023-09-15 , DOI: 10.1021/acsnano.3c05000 Liang Chen 1 , Caiping Ding 1 , Kejie Chai 1 , Bing Yang 1 , Weiwei Chen 1 , Junyi Zeng 1 , Weiming Xu 1 , Youju Huang 1
Affiliation
Deficient catalytic sensitivity to the tumor microenvironment is a major obstacle to nanozyme-mediated tumor therapy. Electron transfer is the intrinsic essence for a nanozyme-catalyzed redox reaction. Here, we developed a nanohole-array-induced metallic molybdenum selenide (n-MoSe2) that is enriched with Se vacancies and can serve as an electronic transfer station for cycling electrons between H2O2 decomposition and glutathione (GSH) depletion. In a MoSe2 nanohole array, the metallic phase reaches up to 84.5%, which has been experimentally and theoretically demonstrated to exhibit ultrasensitive H2O2 responses and enhanced peroxidase (POD)-like activities for H2O2 thermodynamic heterolysis. More intriguingly, plenty of delocalized electrons appear due to phase- and vacancy-facilitated band structure reconstruction. Combined with the limited characteristic sizes of nanoholes, the surface plasmon resonance effect can be excited, leading to the broad absorption spectrum spanning of n-MoSe2 from the visible to near-infrared region (NIR) for photothermal conversion. Under NIR laser irradiation, metallic MoSe2 is able to induce out-of-balance redox and metabolism homeostasis in the tumor region, thus significantly improving therapeutic effects. This study that takes advantage of phase and defect engineering offers inspiring insights into the development of high-efficiency photothermal nanozymes.
中文翻译:
纳米孔阵列诱导金属硒化钼纳米酶用于光增强肿瘤特异性治疗
对肿瘤微环境的催化敏感性不足是纳米酶介导的肿瘤治疗的主要障碍。电子转移是纳米酶催化氧化还原反应的本质。在这里,我们开发了一种纳米孔阵列诱导的金属硒化钼(n- MoSe 2),它富含 Se 空位,可以作为 H 2 O 2分解和谷胱甘肽(GSH)消耗之间电子循环的电子转移站。在MoSe 2纳米孔阵列中,金属相达到84.5%,实验和理论证明其对H 2 O 2热力学异质分解表现出超灵敏的H 2 O 2响应和增强的过氧化物酶(POD)样活性。更有趣的是,由于相位和空位促进的能带结构重建,出现了大量离域电子。结合纳米孔有限的特征尺寸,可以激发表面等离子体共振效应,从而使n- MoSe 2的吸收光谱跨越从可见光到近红外区域(NIR)的宽吸收光谱,用于光热转换。在近红外激光照射下,金属MoSe 2能够诱导肿瘤区域氧化还原和代谢稳态失衡,从而显着提高治疗效果。这项利用相和缺陷工程的研究为高效光热纳米酶的开发提供了鼓舞人心的见解。
更新日期:2023-09-15
中文翻译:
纳米孔阵列诱导金属硒化钼纳米酶用于光增强肿瘤特异性治疗
对肿瘤微环境的催化敏感性不足是纳米酶介导的肿瘤治疗的主要障碍。电子转移是纳米酶催化氧化还原反应的本质。在这里,我们开发了一种纳米孔阵列诱导的金属硒化钼(n- MoSe 2),它富含 Se 空位,可以作为 H 2 O 2分解和谷胱甘肽(GSH)消耗之间电子循环的电子转移站。在MoSe 2纳米孔阵列中,金属相达到84.5%,实验和理论证明其对H 2 O 2热力学异质分解表现出超灵敏的H 2 O 2响应和增强的过氧化物酶(POD)样活性。更有趣的是,由于相位和空位促进的能带结构重建,出现了大量离域电子。结合纳米孔有限的特征尺寸,可以激发表面等离子体共振效应,从而使n- MoSe 2的吸收光谱跨越从可见光到近红外区域(NIR)的宽吸收光谱,用于光热转换。在近红外激光照射下,金属MoSe 2能够诱导肿瘤区域氧化还原和代谢稳态失衡,从而显着提高治疗效果。这项利用相和缺陷工程的研究为高效光热纳米酶的开发提供了鼓舞人心的见解。