当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
AgNbO3-Based Multilayer Capacitors: Heterovalent-Ion-Substitution Engineering Achieves High Energy Storage Performances
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-09-14 , DOI: 10.1021/acsami.3c10240 Ting Tang 1 , Dong Liu 1 , Qi Wang 1 , Lei Zhao 2 , Bo-Ping Zhang 1 , He Qi 3 , Li-Feng Zhu 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-09-14 , DOI: 10.1021/acsami.3c10240 Ting Tang 1 , Dong Liu 1 , Qi Wang 1 , Lei Zhao 2 , Bo-Ping Zhang 1 , He Qi 3 , Li-Feng Zhu 1
Affiliation
The demand for miniaturization and integration in next-generation advanced high-/pulsed-power devices has resulted in a strong desire for dielectric capacitors with high energy storage capabilities. However, practical applications of dielectric capacitors have been hindered by the challenge of poor energy-storage density (Urec) and efficiency (η) caused by large remanent polarization (Pr) and low breakdown strength (BDS). Herein, we take a method of heterovalent ion substitution engineering in combination with the multilayer capacitor (MLCC) technology and thus achieve a large maximum polarization (Pmax), zero Pr, and high BDS in the AgNbO3 (AN) system simultaneously and obtain excellent Urec and η. The substitution of Sm3+ for Ag+ in SmxAN+Mn MLCCs at x ≥ 0.01 decreases the M1–M2 phase transition temperature, and the antiferroelectric (AFE) M2 phase appears at room temperature, which is beneficial to achieving a low Pr value. Due to the low Pr value and high BDS ∼ 1300 kV·cm–1, an excellent Urec ∼9.8 J·cm–3 and PD,max ∼ 34.8 MW·cm–3 were achieved in SmxAN+Mn MLCCs at x = 0.03. The work suggests a paradigm that can enhance the energy storage capabilities of AFE MLCCs to meet the demanding requirements of advanced energy storage applications.
中文翻译:
AgNbO3 基多层电容器:异价离子替代工程实现高储能性能
下一代先进高/脉冲功率器件对小型化和集成化的需求导致了对具有高能量存储能力的介电电容器的强烈需求。然而,大剩余极化(P r)和低击穿强度(BDS)导致的储能密度( U rec )和效率(η)较差的挑战阻碍了介电电容器的实际应用。在此,我们采用异价离子取代工程方法与多层电容器(MLCC)技术相结合,从而在AgNbO 3 (AN)系统中同时实现大的最大极化( P max)、零P r和高BDS获得优异的Urec和η。在x≥0.01的Sm x AN+Mn MLCC中用Sm 3+替代Ag +降低了M 1 –M 2相变温度,并且在室温下出现反铁电(AFE)M 2相,有利于实现低P r值。由于较低的P r值和较高的 BDS ∼ 1300 kV·cm –1 ,Sm x AN+Mn MLCC实现了出色的U rec ∼9.8 J·cm –3和P D,max ∼ 34.8 MW·cm –3在x = 0.03 处。这项工作提出了一种范例,可以增强 AFE MLCC 的储能能力,以满足先进储能应用的苛刻要求。
更新日期:2023-09-14
中文翻译:
AgNbO3 基多层电容器:异价离子替代工程实现高储能性能
下一代先进高/脉冲功率器件对小型化和集成化的需求导致了对具有高能量存储能力的介电电容器的强烈需求。然而,大剩余极化(P r)和低击穿强度(BDS)导致的储能密度( U rec )和效率(η)较差的挑战阻碍了介电电容器的实际应用。在此,我们采用异价离子取代工程方法与多层电容器(MLCC)技术相结合,从而在AgNbO 3 (AN)系统中同时实现大的最大极化( P max)、零P r和高BDS获得优异的Urec和η。在x≥0.01的Sm x AN+Mn MLCC中用Sm 3+替代Ag +降低了M 1 –M 2相变温度,并且在室温下出现反铁电(AFE)M 2相,有利于实现低P r值。由于较低的P r值和较高的 BDS ∼ 1300 kV·cm –1 ,Sm x AN+Mn MLCC实现了出色的U rec ∼9.8 J·cm –3和P D,max ∼ 34.8 MW·cm –3在x = 0.03 处。这项工作提出了一种范例,可以增强 AFE MLCC 的储能能力,以满足先进储能应用的苛刻要求。