Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-09-11 , DOI: 10.1016/j.jcta.2023.105802 Pavel Galashin , Gleb Nenashev , Alexander Postnikov
Triangulations of a product of two simplices and, more generally, of root polytopes are closely related to Gelfand-Kapranov-Zelevinsky's theory of discriminants, to tropical geometry, tropical oriented matroids, and to generalized permutohedra. We introduce a new approach to these objects, identifying a triangulation of a root polytope with a certain bijection between lattice points of two generalized permutohedra. In order to study such bijections, we define trianguloids as edge-colored graphs satisfying simple local axioms. We prove that trianguloids are in bijection with triangulations of root polytopes.
中文翻译:
根多面体的三角面和三角剖分
两个单纯形乘积的三角剖分,更一般地说,根多面体的三角剖分与 Gelfand-Kapranov-Zelevinsky 的判别式理论、热带几何、热带定向拟阵以及广义置换面体密切相关。我们为这些对象引入了一种新方法,识别根多面体的三角剖分,并在两个广义置换面体的格点之间具有一定的双射。为了研究这种双射,我们将三角面定义为满足简单局部公理的边有色图。我们证明三角体与根多面体的三角剖分是双射的。