当前位置: X-MOL 学术npj Quantum Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum computation of reactions on surfaces using local embedding
npj Quantum Information ( IF 6.6 ) Pub Date : 2023-09-12 , DOI: 10.1038/s41534-023-00753-1
Tanvi P. Gujarati , Mario Motta , Triet Nguyen Friedhoff , Julia E. Rice , Nam Nguyen , Panagiotis Kl. Barkoutsos , Richard J. Thompson , Tyler Smith , Marna Kagele , Mark Brei , Barbara A. Jones , Kristen Williams

Modeling electronic systems is an important application for quantum computers. In the context of materials science, an important open problem is the computational description of chemical reactions on surfaces. In this work, we outline a workflow to model the adsorption and reaction of molecules on surfaces using quantum computing algorithms. We develop and compare two local embedding methods for the systematic determination of active spaces. These methods are automated and based on the physics of molecule-surface interactions and yield systematically improvable active spaces. Furthermore, to reduce the quantum resources required for the simulation of the selected active spaces using quantum algorithms, we introduce a technique for exact and automated circuit simplification. This technique is applicable to a broad class of quantum circuits and critical to enable demonstration on near-term quantum devices. We apply the proposed combination of active-space selection and circuit simplification to the dissociation of water on a magnesium surface using classical simulators and quantum hardware. Our study identifies reactions of molecules on surfaces, in conjunction with the proposed algorithmic workflow, as a promising research direction in the field of quantum computing applied to materials science.



中文翻译:

使用局部嵌入对表面反应进行量子计算

电子系统建模是量子计算机的一个重要应用。在材料科学的背景下,一个重要的开放问题是表面化学反应的计算描述。在这项工作中,我们概述了使用量子计算算法模拟分子在表面上的吸附和反应的工作流程。我们开发并比较了两种用于系统确定活动空间的局部嵌入方法。这些方法是自动化的,基于分子-表面相互作用的物理原理,并产生系统可改进的活动空间。此外,为了减少使用量子算法模拟所选活动空间所需的量子资源,我们引入了一种精确且自动化的电路简化技术。该技术适用于广泛的量子电路,对于在近期量子设备上进行演示至关重要。我们使用经典模拟器和量子硬件将所提出的主动空间选择和电路简化的组合应用于镁表面上的水离解。我们的研究结合提出的算法工作流程确定了表面分子的反应,作为应用于材料科学的量子计算领域的一个有前途的研究方向。

更新日期:2023-09-14
down
wechat
bug