当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Constructing Hollow Multishelled Microreactors with a Nanoconfined Microenvironment for Ofloxacin Degradation through Peroxymonosulfate Activation: Evolution of High-Valence Cobalt-Oxo Species
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2023-09-11 , DOI: 10.1021/acs.est.3c04174 Lin Zhang 1 , Juanjuan Qi 1 , Wenxing Chen 2 , Xiaoyong Yang 3 , Zhimo Fang 1 , Jinmeng Li 1 , Xiuze Li 1 , Siyue Lu 1 , Lidong Wang 1
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2023-09-11 , DOI: 10.1021/acs.est.3c04174 Lin Zhang 1 , Juanjuan Qi 1 , Wenxing Chen 2 , Xiaoyong Yang 3 , Zhimo Fang 1 , Jinmeng Li 1 , Xiuze Li 1 , Siyue Lu 1 , Lidong Wang 1
Affiliation
This study constructed hollow multishelled microreactors with a nanoconfined microenvironment for degrading ofloxacin (OFX) through peroxymonosulfate (PMS) activation in Fenton-like advanced oxidation processes (AOPs), resulting in adequate contaminant mineralization. Among the microreactors, a triple-shelled Co-based hollow microsphere (TS-Co/HM) exhibited optimal performance; its OFX degradation rate was 0.598 min–1, which was higher than that of Co3O4 nanoparticles by 8.97-fold. The structural tuning of Co/HM promoted the formation of oxygen vacancies (VO), which then facilitated the evolution of high-valence cobalt-oxo (Co(IV)═O) and shifted the entire t2g orbital of the Co atom upward, promoting catalytic reactions. Co(IV)═O was identified using a phenylmethyl sulfoxide (PMSO) probe and in situ Raman spectroscopy, and theoretical calculations were conducted to identify the lower energy barrier for Co(IV)═O formation on the defect-rich catalyst. Furthermore, the TS-Co/HM catalyst exhibited remarkable stability in inorganic (Cl–, H2PO4–, and NO3–), organic (humic acid), real water samples (tap water, river water, and hospital water), and in a continuous flow system in a microreactor. The nanoconfined microenvironment could enrich reactants in the catalyst cavities, prolong the residence time of molecules, and increase the utilization efficiency of Co(IV)═O. This work describes an activation process involving Co(IV)═O for organic contaminants elimination. Our results may encourage the use of multishelled structures and inform the design of nanoconfined catalysts in AOPs.
中文翻译:
构建具有纳米限制微环境的中空多壳微反应器,通过过一硫酸盐活化降解氧氟沙星:高价钴氧物种的演化
这项研究构建了具有纳米限制微环境的中空多壳微反应器,通过在类芬顿高级氧化过程(AOP)中激活过一硫酸盐(PMS)来降解氧氟沙星(OFX),从而导致污染物充分矿化。在微反应器中,三壳钴基空心微球(TS-Co/HM)表现出最佳性能;其OFX降解率为0.598 min –1,比Co 3 O 4纳米粒子高8.97倍。Co/HM的结构调整促进了氧空位(V O )的形成,从而促进了高价钴氧代(Co(IV)=O)的演化,并使Co原子的整个t 2g轨道向上移动,促进催化反应。使用苯甲基亚砜 (PMSO) 探针和原位拉曼光谱鉴定 Co(IV)=O ,并进行理论计算以确定在富含缺陷的催化剂上形成 Co(IV)=O 的较低能垒。此外,TS-Co/HM催化剂在无机(Cl -、H 2 PO 4 -和NO 3 -)、有机(腐殖酸)、真实水样(自来水、河水和医院水)中表现出卓越的稳定性。 ,以及在微反应器中的连续流动系统中。纳米微环境可以丰富催化剂腔内的反应物,延长分子的停留时间,提高Co(IV)=O的利用效率。这项工作描述了一种涉及 Co(IV)=O 的活化过程,用于消除有机污染物。我们的结果可能会鼓励多壳结构的使用,并为 AOP 中纳米限制催化剂的设计提供信息。
更新日期:2023-09-11
中文翻译:
构建具有纳米限制微环境的中空多壳微反应器,通过过一硫酸盐活化降解氧氟沙星:高价钴氧物种的演化
这项研究构建了具有纳米限制微环境的中空多壳微反应器,通过在类芬顿高级氧化过程(AOP)中激活过一硫酸盐(PMS)来降解氧氟沙星(OFX),从而导致污染物充分矿化。在微反应器中,三壳钴基空心微球(TS-Co/HM)表现出最佳性能;其OFX降解率为0.598 min –1,比Co 3 O 4纳米粒子高8.97倍。Co/HM的结构调整促进了氧空位(V O )的形成,从而促进了高价钴氧代(Co(IV)=O)的演化,并使Co原子的整个t 2g轨道向上移动,促进催化反应。使用苯甲基亚砜 (PMSO) 探针和原位拉曼光谱鉴定 Co(IV)=O ,并进行理论计算以确定在富含缺陷的催化剂上形成 Co(IV)=O 的较低能垒。此外,TS-Co/HM催化剂在无机(Cl -、H 2 PO 4 -和NO 3 -)、有机(腐殖酸)、真实水样(自来水、河水和医院水)中表现出卓越的稳定性。 ,以及在微反应器中的连续流动系统中。纳米微环境可以丰富催化剂腔内的反应物,延长分子的停留时间,提高Co(IV)=O的利用效率。这项工作描述了一种涉及 Co(IV)=O 的活化过程,用于消除有机污染物。我们的结果可能会鼓励多壳结构的使用,并为 AOP 中纳米限制催化剂的设计提供信息。