Nature Catalysis ( IF 42.8 ) Pub Date : 2023-09-11 , DOI: 10.1038/s41929-023-01020-4 Yuting Luo , Ke Xie , Pengfei Ou , Chayse Lavallais , Tao Peng , Zhu Chen , Zhiyuan Zhang , Ning Wang , Xiao-Yan Li , Ivan Grigioni , Bilu Liu , David Sinton , Jennifer B. Dunn , Edward H. Sargent
The nitrogen cycle needed for scaled agriculture relies on energy- and carbon-intensive processes and generates nitrate-containing wastewater. Here we focus on an alternative approach—the electrified co-electrolysis of nitrate and CO2 to synthesize urea. When this is applied to industrial wastewater or agricultural runoff, the approach has the potential to enable low-carbon-intensity urea production while simultaneously providing wastewater denitrification. We report a strategy that increases selectivity to urea using a hybrid catalyst: two classes of site independently stabilize the key intermediates needed in urea formation, *CO2NO2 and *COOHNH2, via a relay catalysis mechanism. A Faradaic efficiency of 75% at wastewater-level nitrate concentrations (1,000 ppm NO3− [N]) is achieved on Zn/Cu catalysts. The resultant catalysts show a urea production rate of 16 µmol h−1 cm−2. Life-cycle assessment indicates greenhouse gas emissions of 0.28 kg CO2e per kg urea for the electrochemical route, compared to 1.8 kg CO2e kg−1 for the present-day route.
中文翻译:
通过混合催化剂的中继催化从硝酸盐和二氧化碳选择性电化学合成尿素
规模化农业所需的氮循环依赖于能源和碳密集型过程,并产生含硝酸盐的废水。在这里,我们关注另一种方法——硝酸盐和CO 2的电共电解来合成尿素。当将其应用于工业废水或农业径流时,该方法有可能实现低碳强度尿素生产,同时提供废水脱氮。我们报告了一种使用混合催化剂提高尿素选择性的策略:两类位点独立稳定尿素形成所需的关键中间体,*CO 2 NO 2和*COOHNH 2,通过中继催化机制。Zn/Cu 催化剂在废水水平硝酸盐浓度(1,000 ppm NO 3 - [N])下实现了 75% 的法拉第效率。所得催化剂显示出16μmol h -1 cm -2的尿素生产率。生命周期评估表明电化学路线每公斤尿素的温室气体排放量为0.28 kg CO 2 e kg -1 ,而当前路线的温室气体排放量为1.8 kg CO 2 e kg -1 。