Energy Storage Materials ( IF 18.9 ) Pub Date : 2023-09-12 , DOI: 10.1016/j.ensm.2023.102963 Kui Chen , Jun Huang , Jili Yuan , Shangdong Qin , Pengfei Huang , Chao Wan , Yang You , Yuanlong Guo , Qinqin Xu , Haibo Xie
Zinc ion hybrid capacitors (ZIHCs) are promising candidate for potential large-scale energy storage, but they still suffer from trade-off in energy density and cycling life originated from Zn dendrite growth and side reactions. Herein, we proposed a sustainable molecular engineering strategy of in situ derivatization of cellulose and composition by taking the particular cellulose solution properties in the superbase/DMSO/CO2 solvent system to prepare a carboxylic acid functionalized cellulose (COOH-f-Cell) hydrogel electrolyte capable of regulating Zn electro-deposition behavior. The findings indicated that the solubilization and derivatization of cellulose expanded the inherent inter-/intra hydrogen bonds network, resulting in the formation of unblocking ion channels with grafted carboxylic acid groups. Impressively, carboxylic acid functional groups achieved the homogeneity of the Zn electrodeposition process and induced the formation of a flat stacking layer of (002) crystal planes, thus effectively inhibiting Zn dendrites. Consequently, the cycle stability of the Zn plating/stripping in symmetrical Zn||Zn cell exceeded 5250 h at 0.5 mA cm−2 (over 7.3 months). The ZIHCs delivered a superb cycling life of 70,000 cycles with 91 % capacity retention at 5 A g–1. This strategy proposed here opens up a fresh route for using cellulose hydrogel electrolytes to regulate the deposition behavior of Zn2+ for high-performance zinc-based energy storage systems.
中文翻译:
用于高度稳定的锌离子混合电容器的分子工程纤维素水凝胶电解质
锌离子混合电容器(ZIHC)是潜在大规模储能的有希望的候选者,但它们仍然因锌枝晶生长和副反应而在能量密度和循环寿命方面受到权衡。在此,我们提出了一种可持续的原位衍生化纤维素和组合物的分子工程策略,通过利用超碱/DMSO/CO 2溶剂体系中特定的纤维素溶液性质来制备羧酸功能化纤维素(COOH- f -Cell)水凝胶电解质能够调节锌电沉积行为。研究结果表明,溶解纤维素的衍生化扩展了固有的间/内氢键网络,导致形成具有接枝羧酸基团的畅通离子通道。令人印象深刻的是,羧酸官能团实现了锌电沉积过程的均匀性,并诱导形成平坦的(002)晶面堆叠层,从而有效抑制了锌枝晶。因此,对称Zn||Zn电池中Zn电镀/剥离的循环稳定性在0.5 mA cm-2(超过7.3个月)。ZIHC 具有 70,000 次循环的卓越循环寿命,在 5 A g–1。这里提出的策略为使用纤维素水凝胶电解质调节高性能锌基储能系统中Zn 2+的沉积行为开辟了一条新途径。