当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Understanding Microstructural Development of Perovskite Crystallization for High Performance Solar Cells
Advanced Materials ( IF 27.4 ) Pub Date : 2023-09-10 , DOI: 10.1002/adma.202306947
Yabin Ma 1 , Xinyi Du 1 , Ran Chen 1 , Lu Zhang 1 , Zhongwei An 1 , Alex K-Y Jen 2 , Jiaxue You 1, 2 , Shengzhong Frank Liu 1, 3, 4
Advanced Materials ( IF 27.4 ) Pub Date : 2023-09-10 , DOI: 10.1002/adma.202306947
Yabin Ma 1 , Xinyi Du 1 , Ran Chen 1 , Lu Zhang 1 , Zhongwei An 1 , Alex K-Y Jen 2 , Jiaxue You 1, 2 , Shengzhong Frank Liu 1, 3, 4
Affiliation
![]() |
Solution crystallization in film devices has attracted broad interest from various fields such as perovskite solar cells. However, the detailed perovskite crystallization kinetics remain unclear due to the difficulty of in situ observation of grain cluster growth during annealing. This article presents the development of an in situ laser scanning confocal polarized microscopy with a temperature-controlled stage to observe nucleation and growth of perovskite crystal clusters. It is found that enhanced interactions by a liquid crystal with perovskite form a new intermediate complex that induces diffusion-controlled growth according to Avrami equation. The retarded cluster growth (63 nm s−1) originates from enlarged diffusion activation energy 40 kJ mol−1 compared with 152 nm s−1 and 37 kJ mol−1 for the Control film during annealing. Finally, the optimized perovskite films with enhanced crystallographic and optical characteristics are applied in solar cells to achieve a champion efficiency of 24.53% with open circuit voltage of 1.172 V and fill factor of 82.78%. The bare device without any protection maintains 89% of its initial efficiency after 6600 h of aging in ambient environment. This work implies that the in situ observation using fluorescence microscopy is a critical for understanding of crystallization kinetics in film devices.
中文翻译:
了解高性能太阳能电池钙钛矿结晶的微观结构发展
薄膜器件中的溶液结晶引起了钙钛矿太阳能电池等各个领域的广泛兴趣。然而,由于退火过程中晶粒簇生长的原位观察困难,详细的钙钛矿结晶动力学仍不清楚。本文介绍了原位激光扫描共焦偏振显微镜的开发,该显微镜具有温度控制阶段,用于观察钙钛矿晶体簇的成核和生长。研究发现,液晶与钙钛矿的相互作用增强,形成了一种新的中间复合物,根据 Avrami 方程,该复合物诱导扩散控制生长。延迟的团簇生长(63 nm s -1 )源于退火期间控制膜的扩散活化能40 kJ mol -1的增大,而对照膜的扩散活化能为152 nm s -1和37 kJ mol -1 。最后,具有增强晶体学和光学特性的优化钙钛矿薄膜应用于太阳能电池,实现了 24.53% 的冠军效率、1.172 V 的开路电压和 82.78% 的填充因子。没有任何保护的裸器件在环境环境中老化6600小时后仍保持其初始效率的89%。这项工作意味着使用荧光显微镜进行原位观察对于理解薄膜器件中的结晶动力学至关重要。
更新日期:2023-09-10
中文翻译:

了解高性能太阳能电池钙钛矿结晶的微观结构发展
薄膜器件中的溶液结晶引起了钙钛矿太阳能电池等各个领域的广泛兴趣。然而,由于退火过程中晶粒簇生长的原位观察困难,详细的钙钛矿结晶动力学仍不清楚。本文介绍了原位激光扫描共焦偏振显微镜的开发,该显微镜具有温度控制阶段,用于观察钙钛矿晶体簇的成核和生长。研究发现,液晶与钙钛矿的相互作用增强,形成了一种新的中间复合物,根据 Avrami 方程,该复合物诱导扩散控制生长。延迟的团簇生长(63 nm s -1 )源于退火期间控制膜的扩散活化能40 kJ mol -1的增大,而对照膜的扩散活化能为152 nm s -1和37 kJ mol -1 。最后,具有增强晶体学和光学特性的优化钙钛矿薄膜应用于太阳能电池,实现了 24.53% 的冠军效率、1.172 V 的开路电压和 82.78% 的填充因子。没有任何保护的裸器件在环境环境中老化6600小时后仍保持其初始效率的89%。这项工作意味着使用荧光显微镜进行原位观察对于理解薄膜器件中的结晶动力学至关重要。