当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Liquid-source plasma technology for construction of dual bromine-fluorine-enriched interphases on lithium metal anodes with enhanced performance
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2023-09-09 , DOI: 10.1016/j.jmst.2023.09.001
Ping Liu , Zhong Qiu , Feng Cao , Yongqi Zhang , Xinping He , Shenghui Shen , Xinqi Liang , Minghua Chen , Chen Wang , Wangjun Wan , Yang Xia , Xinhui Xia , Wenkui Zhang

The electrochemical performance of Li metal anode is closely bound up with the interphase between Li and lithium-loaded skeleton as well as solid electrolyte interphase (SEI) on Li surface. Herein, for the first time, we propose a novel liquid-source CHBr2F plasma technology to simultaneously construct dual bromine-fluorine-enriched interphases: NiBr2-NiF2 interphase on sponge Ni (SN) skeleton and LiBr-LiF-enriched SEI on Li anode, respectively. Based on density functional theory (DFT) calculations and COMSOL multiphysics simulation results, SN skeleton with NiBr2-NiF2 interphase can effectively decrease the local current density with good lithiophilicity. And the LiBr-LiF-enriched SEI on Li surface can function to block electron tunneling and hinder side electrochemical reduction of electrolyte components, thus suppressing the growth of dendrite and facilitating the homogeneous transportation of lithium ions. Consequently, the Li/SN electrodes with modified interphases show remarkable stability with a low overpotential of 22.6 mV over 1800 h at 1 mA cm–2/1 mAh cm–2 and an exceptional average Coulombic efficiency of 99.6%. When coupled with LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode, the full cells deliver improved cycling stability with a capacity retention of 79.5% even after 350 cycles at 0.5 C. This study provides a facile and new plasma method for the construction of advanced Li anodes for energy storage.



中文翻译:

液源等离子体技术在锂金属阳极上构建双富溴氟界面相,性能增强

锂金属负极的电化学性能与锂与载锂骨架之间的界面以及锂表面的固体电解质界面(SEI)密切相关。在此,我们首次提出了一种新型液源CHBr 2 F等离子体技术,可同时构建双富溴-氟界面相:海绵Ni(SN)骨架上的NiBr 2 -NiF 2界面相和富含LiBr-LiF的SEI分别在Li阳极上。基于密度泛函理论(DFT)计算和COMSOL多物理场模拟结果,具有NiBr 2 -NiF 2中间相的SN骨架可以有效降低局部电流密度,并且具有良好的亲锂性。Li表面富集LiBr-LiF的SEI可以阻止电子隧道效应并阻碍电解质组分的侧面电化学还原,从而抑制枝晶的生长并促进锂离子的均匀传输。因此,具有改性界面的Li/SN电极表现出显着的稳定性,在1 mA cm –2 /1 mAh cm –2下1800小时内具有22.6 mV的低过电势,并且平均库仑效率高达99.6%。当与 LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) 阴极结合使用时,全电池可提高循环稳定性,即使在 0.5 C 下循环 350 次后,容量保持率仍为 79.5%。这项研究为构建电池提供了一种简便的新型等离子体方法。用于储能的先进锂阳极。

更新日期:2023-09-09
down
wechat
bug